Improvements on the star discrepancy of (t,s)-sequences

The term low-discrepancy sequences is widely used to refer to s-dimensional sequences X satisfying the bound D∗(N,X) ≤ cs(log N)s + O((log N)s−1), where D∗ denotes the usual star discrepancy. In this article, we are concerned with (t, s)-sequences in base b, one of the most famous families of low-discrepancy sequences along with Halton sequences. The constants cs for (t, s)-sequences were first computed by Sobol’ and Faure in special cases and then achieved in general form by Niederreiter in the eighties. Then, quite recently, Kritzer improved these constants for s ≥ 2 by a factor 1 2 for an odd base and b 2(b+1) for an even base b ≥ 4. Our aim is to further improve the result in the case of an even base by a factor 2(b+1) b ( b−1 b )s−1 (s ≥ 2), hence obtaining the ratio 3 2s−1 for b = 2. Combining this estimate with best known t-values from the database MinT, we obtain new values for Niederreiter-Xing sequences where base 2 recovers supremacy on base 3 (in Kritzer’s paper). Our proof relies on a method of Atanassov to bound the discrepancy of Halton sequences. We also investigate (t, 1)-sequences for which the approach of Kritzer does not work.

[1]  Wolfgang Ch. Schmid,et al.  MinT: A Database for Optimal Net Parameters , 2006 .

[2]  A NEW UPPER BOUND ON THE STAR DISCREPANCY OF (0,1)-SEQUENCES , 2005 .

[3]  Christiane Lemieux,et al.  Corrigendum to: "Improvements on the star discrepancy of (t,s)-sequences" (Acta Arith. 154 (2012), 61-78) , 2013 .

[4]  Shu Tezuka,et al.  Polynomial arithmetic analogue of Halton sequences , 1993, TOMC.

[5]  Peter Kritzer,et al.  Improved upper bounds on the star discrepancy of (t, m, s)-nets and (t, s)-sequences , 2006, J. Complex..

[6]  H. Niederreiter,et al.  Rational Points on Curves Over Finite Fields: Theory and Applications , 2001 .

[7]  Harald Niederreiter,et al.  Low-discrepancy sequences using duality and global function fields , 2007 .

[8]  J. Halton On the efficiency of certain quasi-random sequences of points in evaluating multi-dimensional integrals , 1960 .

[9]  Henri FAURE,et al.  A NOTE ON ATANASSOV’S DISCREPANCY BOUND FOR THE HALTON SEQUENCE by Xiaoheng WANG and Christiane L , 2008 .

[10]  F. Pillichshammer,et al.  Digital Nets and Sequences: Discrepancy Theory and Quasi-Monte Carlo Integration , 2010 .

[11]  H. Faure Discrépance de suites associées à un système de numération (en dimension s) , 1982 .

[12]  Harald Niederreiter,et al.  Random number generation and Quasi-Monte Carlo methods , 1992, CBMS-NSF regional conference series in applied mathematics.

[13]  Christiane Lemieux,et al.  Generalized Halton sequences in 2008: A comparative study , 2009, TOMC.

[14]  C. Lemieux Monte Carlo and Quasi-Monte Carlo Sampling , 2009 .

[15]  H. Faure,et al.  Van der Corput sequences towards general (0,1)–sequences in base b , 2007 .

[16]  H. Niederreiter Point sets and sequences with small discrepancy , 1987 .

[17]  S. Hansen Rational Points on Curves over Finite Fields , 1995 .

[18]  H. Niederreiter,et al.  Low-Discrepancy Sequences and Global Function Fields with Many Rational Places , 1996 .

[19]  Henri Faure Discrépances de suites associées à un système de numération (en dimension un) , 1981 .

[20]  Christiane Lemieux,et al.  Extensions of Atanassov’s methods for Halton sequences , 2012 .

[21]  V. Ostromoukhov Recent Progress in Improvement of Extreme Discrepancy and Star Discrepancy of One-Dimensional Sequences , 2009 .

[22]  I. Sobol On the distribution of points in a cube and the approximate evaluation of integrals , 1967 .

[23]  Peter Kritzer,et al.  A best possible upper bound on the star discrepancy of (t, m, 2)-nets , 2006, Monte Carlo Methods Appl..

[24]  Harald Niederreiter,et al.  Quasirandom points and global function fields , 1996 .