Scale-free networks in cell biology

A cell's behavior is a consequence of the complex interactions between its numerous constituents, such as DNA, RNA, proteins and small molecules. Cells use signaling pathways and regulatory mechanisms to coordinate multiple processes, allowing them to respond to and adapt to an ever-changing environment. The large number of components, the degree of interconnectivity and the complex control of cellular networks are becoming evident in the integrated genomic and proteomic analyses that are emerging. It is increasingly recognized that the understanding of properties that arise from whole-cell function require integrated, theoretical descriptions of the relationships between different cellular components. Recent theoretical advances allow us to describe cellular network structure with graph concepts and have revealed organizational features shared with numerous non-biological networks. We now have the opportunity to describe quantitatively a network of hundreds or thousands of interacting components. Moreover, the observed topologies of cellular networks give us clues about their evolution and how their organization influences their function and dynamic responses.

[1]  Edsger W. Dijkstra,et al.  A note on two problems in connexion with graphs , 1959, Numerische Mathematik.

[2]  M. Feinberg Chemical Oscillations, Multiple Equilibria, and Reaction Network Structure , 1980 .

[3]  D. Labie,et al.  Molecular Evolution , 1991, Nature.

[4]  S. Leibler,et al.  Robustness in simple biochemical networks , 1997, Nature.

[5]  Duncan J. Watts,et al.  Collective dynamics of ‘small-world’ networks , 1998, Nature.

[6]  Albert,et al.  Emergence of scaling in random networks , 1999, Science.

[7]  J. Hopfield,et al.  From molecular to modular cell biology , 1999, Nature.

[8]  James R. Knight,et al.  A comprehensive analysis of protein–protein interactions in Saccharomyces cerevisiae , 2000, Nature.

[9]  M. Mann,et al.  Proteomics to study genes and genomes , 2000, Nature.

[10]  G. Odell,et al.  The segment polarity network is a robust developmental module , 2000, Nature.

[11]  A. Levine,et al.  Surfing the p53 network , 2000, Nature.

[12]  J. Levine,et al.  Surfing the p53 network , 2000, Nature.

[13]  R. Albert,et al.  The large-scale organization of metabolic networks , 2000, Nature.

[14]  S. Fields,et al.  Genome-wide analysis of vaccinia virus protein-protein interactions. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[15]  F. Baas,et al.  The Human Transcriptome Map: Clustering of Highly Expressed Genes in Chromosomal Domains , 2001, Science.

[16]  C. Burge,et al.  Chipping away at the transcriptome , 2001, Nature Genetics.

[17]  A. Barabasi,et al.  Lethality and centrality in protein networks , 2001, Nature.

[18]  D. Fell,et al.  The small world inside large metabolic networks , 2000, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[19]  Kathy Chen,et al.  Network dynamics and cell physiology , 2001, Nature Reviews Molecular Cell Biology.

[20]  T. Liesegang The human transcriptome map: Clustering of highly expressed genes in chromosomal domains. Caron H, ∗ van Schaik B, van der Mee M, et al. Science 2001;291:1289–1292. , 2001 .

[21]  J. Wojcik,et al.  The protein–protein interaction map of Helicobacter pylori , 2001, Nature.

[22]  R. Ozawa,et al.  A comprehensive two-hybrid analysis to explore the yeast protein interactome , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[23]  Albert-László Barabási,et al.  Statistical mechanics of complex networks , 2001, ArXiv.

[24]  K. Sneppen,et al.  Specificity and Stability in Topology of Protein Networks , 2002, Science.

[25]  Gary D Bader,et al.  Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry , 2002, Nature.

[26]  A. Hoffmann,et al.  The I (cid:1) B –NF-(cid:1) B Signaling Module: Temporal Control and Selective Gene Activation , 2022 .

[27]  M. Newman Random Graphs as Models of Networks , 2002, cond-mat/0202208.

[28]  P. Bourgine,et al.  Topological and causal structure of the yeast transcriptional regulatory network , 2002, Nature Genetics.

[29]  M E J Newman,et al.  Community structure in social and biological networks , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[30]  S. Redner,et al.  Infinite-order percolation and giant fluctuations in a protein interaction network. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[31]  S. Shen-Orr,et al.  Network motifs in the transcriptional regulation network of Escherichia coli , 2002, Nature Genetics.

[32]  A. Vespignani,et al.  Modeling of Protein Interaction Networks , 2001, Complexus.

[33]  A. Hoffmann,et al.  The IkappaB-NF-kappaB signaling module: temporal control and selective gene activation. , 2002, Science.

[34]  P. Cohen Protein kinases — the major drug targets of the twenty-first century? , 2002, Nature reviews. Drug discovery.

[35]  Nicola J. Rinaldi,et al.  Transcriptional Regulatory Networks in Saccharomyces cerevisiae , 2002, Science.

[36]  P. Bork,et al.  Functional organization of the yeast proteome by systematic analysis of protein complexes , 2002, Nature.

[37]  S. Shen-Orr,et al.  Network motifs: simple building blocks of complex networks. , 2002, Science.

[38]  B. Snel,et al.  Comparative assessment of large-scale data sets of protein–protein interactions , 2002, Nature.

[39]  A. Valencia,et al.  Computational methods for the prediction of protein interactions. , 2002, Current opinion in structural biology.

[40]  A. Barabasi,et al.  Hierarchical Organization of Modularity in Metabolic Networks , 2002, Science.

[41]  Jason A. Papin,et al.  Extreme pathway lengths and reaction participation in genome-scale metabolic networks. , 2002, Genome research.

[42]  Ronald W. Davis,et al.  Functional profiling of the Saccharomyces cerevisiae genome , 2002, Nature.

[43]  Katherine C. Chen,et al.  Sniffers, buzzers, toggles and blinkers: dynamics of regulatory and signaling pathways in the cell. , 2003, Current opinion in cell biology.

[44]  S. Mangan,et al.  Structure and function of the feed-forward loop network motif , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[45]  A. Wagner How the global structure of protein interaction networks evolves , 2002, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[46]  Andreas Wagner,et al.  Convergent evolution of gene circuits , 2003, Nature Genetics.

[47]  An-Ping Zeng,et al.  The Connectivity Structure, Giant Strong Component and Centrality of Metabolic Networks , 2003, Bioinform..

[48]  Z N Oltvai,et al.  Evolutionary conservation of motif constituents in the yeast protein interaction network , 2003, Nature Genetics.

[49]  Reinhart Heinrich,et al.  The Roles of APC and Axin Derived from Experimental and Theoretical Analysis of the Wnt Pathway , 2003, PLoS biology.

[50]  Sara Light,et al.  Network analysis of metabolic enzyme evolution in Escherichia coli , 2004, BMC Bioinformatics.

[51]  Matthew W. Hahn,et al.  Molecular Evolution in Large Genetic Networks: Does Connectivity Equal Constraint? , 2004, Journal of Molecular Evolution.

[52]  Joshua M. Stuart,et al.  A Gene-Coexpression Network for Global Discovery of Conserved Genetic Modules , 2003, Science.

[53]  James R. Knight,et al.  A Protein Interaction Map of Drosophila melanogaster , 2003, Science.

[54]  L. Mirny,et al.  Protein complexes and functional modules in molecular networks , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[55]  A. Levchenko Dynamical and integrative cell signaling: challenges for the new biology , 2003, Biotechnology and bioengineering.

[56]  Alexander Rives,et al.  Modular organization of cellular networks , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[57]  H. Othmer,et al.  The topology of the regulatory interactions predicts the expression pattern of the segment polarity genes in Drosophila melanogaster. , 2003, Journal of theoretical biology.

[58]  R. Solé,et al.  Evolving protein interaction networks through gene duplication. , 2003, Journal of theoretical biology.

[59]  Mark E. J. Newman,et al.  The Structure and Function of Complex Networks , 2003, SIAM Rev..

[60]  E. Levanon,et al.  Preferential attachment in the protein network evolution. , 2003, Physical review letters.

[61]  R. Milo,et al.  Network motifs in integrated cellular networks of transcription-regulation and protein-protein interaction. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[62]  A. Barabasi,et al.  Global organization of metabolic fluxes in the bacterium Escherichia coli , 2004, Nature.

[63]  Igor Jurisica,et al.  Protein complex prediction via cost-based clustering , 2004, Bioinform..

[64]  A. Barabasi,et al.  Functional and topological characterization of protein interaction networks , 2004, Proteomics.

[65]  Gary D Bader,et al.  Global Mapping of the Yeast Genetic Interaction Network , 2004, Science.

[66]  Q. Ouyang,et al.  The yeast cell-cycle network is robustly designed. , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[67]  A. Wagner,et al.  Structure and evolution of protein interaction networks: a statistical model for link dynamics and gene duplications , 2002, BMC Evolutionary Biology.

[68]  Masanori Arita The metabolic world of Escherichia coli is not small. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[69]  A. Fraser,et al.  A probabilistic view of gene function , 2004, Nature Genetics.

[70]  S. L. Wong,et al.  A Map of the Interactome Network of the Metazoan C. elegans , 2004, Science.

[71]  Ney Lemke,et al.  Essentiality and damage in metabolic networks , 2004, Bioinform..

[72]  S. L. Wong,et al.  Combining biological networks to predict genetic interactions. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[73]  A. Barabasi,et al.  Network biology: understanding the cell's functional organization , 2004, Nature Reviews Genetics.

[74]  Thomas J. Begley,et al.  Global network analysis of phenotypic effects: Protein networks and toxicity modulation in Saccharomyces cerevisiae , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[75]  Lan V. Zhang,et al.  Evidence for dynamically organized modularity in the yeast protein–protein interaction network , 2004, Nature.

[76]  Réka Albert,et al.  Conserved network motifs allow protein-protein interaction prediction , 2004, Bioinform..

[77]  Nir Friedman,et al.  Inferring Cellular Networks Using Probabilistic Graphical Models , 2004, Science.

[78]  Jason A. Papin,et al.  Topological analysis of mass-balanced signaling networks: a framework to obtain network properties including crosstalk. , 2004, Journal of theoretical biology.

[79]  M. Gerstein,et al.  Genomic analysis of regulatory network dynamics reveals large topological changes , 2004, Nature.

[80]  S. L. Wong,et al.  Motifs, themes and thematic maps of an integrated Saccharomyces cerevisiae interaction network , 2005, Journal of biology.

[81]  Z. N. Oltvai,et al.  Topological units of environmental signal processing in the transcriptional regulatory network of Escherichia coli , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[82]  R. Tanaka,et al.  Scale-rich metabolic networks. , 2005, Physical review letters.

[83]  A. Regev,et al.  Conservation and evolvability in regulatory networks: the evolution of ribosomal regulation in yeast. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[84]  S. Havlin,et al.  Structural properties of scale‐free networks , 2005 .

[85]  Béla Bollobás,et al.  Mathematical results on scale‐free random graphs , 2005 .

[86]  Madalena Chaves,et al.  Robustness and fragility of Boolean models for genetic regulatory networks. , 2005, Journal of theoretical biology.

[87]  William J. R. Longabaugh,et al.  Computational representation of developmental genetic regulatory networks. , 2005, Developmental biology.

[88]  Prahlad T. Ram,et al.  Formation of Regulatory Patterns During Signal Propagation in a Mammalian Cellular Network , 2005, Science.

[89]  R. Iyengar,et al.  Toward predictive models of mammalian cells. , 2005, Annual review of biophysics and biomolecular structure.

[90]  Jason A. Papin,et al.  Reconstruction of cellular signalling networks and analysis of their properties , 2005, Nature Reviews Molecular Cell Biology.

[91]  Alan M. Frieze,et al.  Random graphs , 2006, SODA '06.

[92]  L. Hood,et al.  Reverse Engineering of Biological Complexity , 2007 .

[93]  Stanley Wasserman,et al.  Social Network Analysis: Methods and Applications , 1994, Structural analysis in the social sciences.