Molecular Alterations Associated with Osteosarcoma Development

Osteosarcoma is the most frequent malignant primary bone tumor characterized by a high potency to form lung metastases which is the main cause of death. Unfortunately, the conventional chemotherapy is not fully effective on osteosarcoma metastases. The progression of a primary tumor to metastasis requires multiple processes, which are neovascularization, proliferation, invasion, survival in the bloodstream, apoptosis resistance, arrest at a distant organ, and outgrowth in secondary sites. Consequently, recent studies have revealed new insights into the molecular mechanisms of metastasis development. The understanding of the mechanism of molecular alterations can provide the identification of novel therapeutic targets and/or prognostic markers for osteosarcoma treatment to improve the clinical outcome.

[1]  D. Heymann,et al.  Targeted therapies for bone sarcomas. , 2013, BoneKEy reports.

[2]  Sun Mi Park,et al.  Erratum: CD95 promotes tumour growth (Nature (2010) 465 (492-496) DOI: 10.1038/nature09075) , 2012 .

[3]  B. Qian,et al.  Increased expression of insulin‐like growth factor‐1 receptor is correlated with tumor metastasis and prognosis in patients with osteosarcoma , 2012, Journal of surgical oncology.

[4]  D. Heymann,et al.  Bone sarcomas: pathogenesis and new therapeutic approaches , 2011 .

[5]  Ping Chen,et al.  Relationships between levels of CXCR4 and VEGF and blood-borne metastasis and survival in patients with osteosarcoma , 2011, Medical oncology.

[6]  Quan Tian,et al.  Antitumor activity of natural compounds, curcumin and PKF118-310, as Wnt/β-catenin antagonists against human osteosarcoma cells , 2010, Investigational New Drugs.

[7]  G. Moriceau,et al.  Therapeutic approach of primary bone tumours by bisphosphonates. , 2010, Current pharmaceutical design.

[8]  P. Houghton,et al.  Fully Human Monoclonal Antibody Targeting IGF-1 R , Is Effective Alone and in Combination With Rapamycin in Inhibiting Growth of Osteosarcoma Xenografts , 2010 .

[9]  A. Chambers,et al.  Extracellular matrix: a gatekeeper in the transition from dormancy to metastatic growth. , 2010, European journal of cancer.

[10]  Bin Wang,et al.  Lentivirus-mediated shRNA targeting insulin-like growth factor-1 receptor (IGF-1R) enhances chemosensitivity of osteosarcoma cells in vitro and in vivo , 2010, Molecular and Cellular Biochemistry.

[11]  X. Zi,et al.  Wnt Inhibitory Factor 1 Decreases Tumorigenesis and Metastasis in Osteosarcoma , 2010, Molecular Cancer Therapeutics.

[12]  G. Camussi,et al.  Sorafenib blocks tumour growth, angiogenesis and metastatic potential in preclinical models of osteosarcoma through a mechanism potentially involving the inhibition of ERK1/2, MCL-1 and ezrin pathways , 2009, Molecular Cancer.

[13]  G. Camussi,et al.  Abstract C213: Sorafenib blocks tumor growth, angiogenesis, and metastatic potential in preclinical models of osteosarcoma through the inhibition of ERK1/2, MCL‐1, and ezrin pathways , 2009 .

[14]  Juan Tang,et al.  Silencing of calpain expression reduces the metastatic potential of human osteosarcoma cells , 2009, Cell biology international.

[15]  E. Kleinerman,et al.  Antagonism of chemokine receptor CXCR3 inhibits osteosarcoma metastasis to lungs , 2009, International journal of cancer.

[16]  D. Hughes How the NOTCH pathway contributes to the ability of osteosarcoma cells to metastasize. , 2009, Cancer treatment and research.

[17]  Mimi Y. Kim,et al.  Correlation between clinical outcome and growth factor pathway expression in osteogenic sarcoma , 2009, Cancer.

[18]  E. Haura,et al.  Src kinases as therapeutic targets for cancer , 2009, Nature Reviews Clinical Oncology.

[19]  Chun-Yin Huang,et al.  Stromal cell‐derived factor‐1/CXCR4 enhanced motility of human osteosarcoma cells involves MEK1/2, ERK and NF‐κB‐dependent pathways , 2009, Journal of cellular physiology.

[20]  H. Okamura,et al.  Immunotherapy with Interleukin-18 in Combination with Preoperative Chemotherapy with Ifosfamide Effectively Inhibits Postoperative Progression of Pulmonary Metastases in a Mouse Osteosarcoma Model , 2009, Tumor Biology.

[21]  D. Heymann,et al.  Mechanisms of bone repair and regeneration. , 2009, Trends in molecular medicine.

[22]  S. Jung,et al.  Risedronate inhibits human osteosarcoma cell invasion , 2009, Journal of experimental & clinical cancer research : CR.

[23]  H. Seewald,et al.  Insulin-like growth factor I correlations to changes of the hormonal status in puberty and age. , 2009, Experimental and clinical endocrinology.

[24]  H. Sasaki,et al.  Inhibition of Notch pathway prevents osteosarcoma growth by cell cycle regulation , 2009, British Journal of Cancer.

[25]  R. Iozzo,et al.  Basement membrane proteoglycans: Modulators Par Excellence of cancer growth and angiogenesis , 2009, Molecules and cells.

[26]  R. Gorlick,et al.  Inhibition of Src Phosphorylation Alters Metastatic Potential of Osteosarcoma In vitro but not In vivo , 2009, Clinical Cancer Research.

[27]  L. Helman,et al.  Beta4 integrin promotes osteosarcoma metastasis and interacts with ezrin , 2009, Oncogene.

[28]  Raphael Kopan,et al.  The Canonical Notch Signaling Pathway: Unfolding the Activation Mechanism , 2009, Cell.

[29]  L. Donehower,et al.  Notch signaling contributes to the pathogenesis of human osteosarcomas. , 2009, Human molecular genetics.

[30]  A. Strasser,et al.  The many roles of FAS receptor signaling in the immune system. , 2009, Immunity.

[31]  Zhaoxia Wang,et al.  Lentivirus-mediated RNAi knockdown of insulin-like growth factor-1 receptor inhibits growth, reduces invasion, and enhances radiosensitivity in human osteosarcoma cells , 2009, Molecular and Cellular Biochemistry.

[32]  S. Hewitt,et al.  The actin-cytoskeleton linker protein ezrin is regulated during osteosarcoma metastasis by PKC , 2009, Oncogene.

[33]  M. Padrines,et al.  Proteases and bone remodelling. , 2009, Cytokine & growth factor reviews.

[34]  Paola Chiarugi,et al.  Anoikis: a necessary death program for anchorage-dependent cells. , 2008, Biochemical pharmacology.

[35]  S. Indraccolo,et al.  Cellular interactions in the vascular niche: implications in the regulation of tumor dormancy   , 2008, APMIS : acta pathologica, microbiologica, et immunologica Scandinavica.

[36]  R. Vessella,et al.  Cancer micrometastasis and tumour dormancy   , 2008, APMIS : acta pathologica, microbiologica, et immunologica Scandinavica.

[37]  C. Xian,et al.  Roles of Wnt signalling in bone growth, remodelling, skeletal disorders and fracture repair , 2008, Journal of cellular physiology.

[38]  S. Keir,et al.  Initial testing (stage 1) of a monoclonal antibody (SCH 717454) against the IGF‐1 receptor by the pediatric preclinical testing program , 2008, Pediatric blood & cancer.

[39]  Yan-wen Yang,et al.  Critical Role of Notch Signaling in Osteosarcoma Invasion and Metastasis , 2008, Clinical Cancer Research.

[40]  C. Napoli,et al.  Deletion of Yin Yang 1 protein in osteosarcoma cells on cell invasion and CXCR4/angiogenesis and metastasis. , 2008, Cancer research.

[41]  D. Heymann,et al.  Liposomal muramyl tripeptide phosphatidyl ethanolamine: a safe and effective agent against osteosarcoma pulmonary metastases , 2008, Expert review of anticancer therapy.

[42]  Lloyd J. Old,et al.  Adaptive immunity maintains occult cancer in an equilibrium state , 2007, Nature.

[43]  Young-Chae Chang,et al.  Disulfiram suppresses invasive ability of osteosarcoma cells via the inhibition of MMP-2 and MMP-9 expression. , 2007, Journal of biochemistry and molecular biology.

[44]  J. Aguirre-Ghiso,et al.  Models, mechanisms and clinical evidence for cancer dormancy , 2007, Nature Reviews Cancer.

[45]  E. Kleinerman,et al.  Fas-Negative Osteosarcoma Tumor Cells Are Selected during Metastasis to the Lungs: The Role of the Fas Pathway in the Metastatic Process of Osteosarcoma , 2007, Molecular Cancer Research.

[46]  Andrea Giustina,et al.  Mechanisms of anabolic therapies for osteoporosis. , 2007, The New England journal of medicine.

[47]  M. Colombo,et al.  Caveolin-1 reduces osteosarcoma metastases by inhibiting c-Src activity and met signaling. , 2007, Cancer research.

[48]  R. Holcombe,et al.  Blocking Wnt/LRP5 signaling by a soluble receptor modulates the epithelial to mesenchymal transition and suppresses met and metalloproteinases in osteosarcoma Saos‐2 cells , 2007, Journal of orthopaedic research : official publication of the Orthopaedic Research Society.

[49]  R. Baron,et al.  Targeting the Wnt/beta-catenin pathway to regulate bone formation in the adult skeleton. , 2007, Endocrinology.

[50]  S. Eccles,et al.  Metastasis: recent discoveries and novel treatment strategies , 2007, The Lancet.

[51]  M. Peter,et al.  The CD95 Receptor: Apoptosis Revisited , 2007, Cell.

[52]  R. Jove,et al.  Dasatinib inhibits migration and invasion in diverse human sarcoma cell lines and induces apoptosis in bone sarcoma cells dependent on SRC kinase for survival. , 2007, Cancer research.

[53]  David M. Thomas,et al.  Molecular pathogenesis of osteosarcoma. , 2007, DNA and cell biology.

[54]  R. Kaplan,et al.  Bone marrow cells in the ‘pre-metastatic niche’: within bone and beyond , 2007, Cancer and Metastasis Reviews.

[55]  G. Bacci,et al.  Primary bone osteosarcoma in the pediatric age: state of the art. , 2006, Cancer treatment reviews.

[56]  G. Inghirami,et al.  β4 Integrin Amplifies ErbB2 Signaling to Promote Mammary Tumorigenesis , 2006, Cell.

[57]  P. Steeg Tumor metastasis: mechanistic insights and clinical challenges , 2006, Nature Medicine.

[58]  Q. Tao,et al.  Inactivation of Wnt inhibitory factor-1 (WIF1) expression by epigenetic silencing is a common event in breast cancer. , 2006, Carcinogenesis.

[59]  B. McIntyre,et al.  PI3-K/Akt-mediated anoikis resistance of human osteosarcoma cells requires Src activation. , 2006, European journal of cancer.

[60]  F. Bertoni,et al.  Influence of local recurrence on survival in patients with extremity osteosarcoma treated with neoadjuvant chemotherapy , 2006, Cancer.

[61]  Susan O'Brien,et al.  Dasatinib in imatinib-resistant Philadelphia chromosome-positive leukemias. , 2006, The New England journal of medicine.

[62]  A. Puisieux,et al.  Metastasis: a question of life or death , 2006, Nature Reviews Cancer.

[63]  H. Körner,et al.  Trypsin in colorectal cancer: molecular biological mechanisms of proliferation, invasion, and metastasis , 2006, The Journal of pathology.

[64]  E. Kleinerman,et al.  Intranasal interleukin‐12 gene therapy enhanced the activity of ifosfamide against osteosarcoma lung metastases , 2006, Cancer.

[65]  Cheng-Ta Yang,et al.  Wnt signaling activation and WIF-1 silencing in nasopharyngeal cancer cell lines. , 2006, Biochemical and biophysical research communications.

[66]  David Zurakowski,et al.  A model of human tumor dormancy: an angiogenic switch from the nonangiogenic phenotype. , 2006, Journal of the National Cancer Institute.

[67]  H. Okamura,et al.  Effect of interleukin-18 on metastasis of mouse osteosarcoma cells , 2006, Cancer Immunology, Immunotherapy.

[68]  M. Tatematsu,et al.  Chemical genomic screening for methylation‐silenced genes in gastric cancer cell lines using 5‐aza‐2′‐deoxycytidine treatment and oligonucleotide microarray , 2006, Cancer science.

[69]  R. Stan,et al.  Structure of caveolae. , 2005, Biochimica et biophysica acta.

[70]  E. Kleinerman,et al.  Interleukin-12 Up-Regulates Fas Expression in Human Osteosarcoma and Ewing's Sarcoma Cells by Enhancing Its Promoter Activity , 2005, Molecular Cancer Research.

[71]  E. Kleinerman,et al.  Fas Expression in Lung Metastasis From Osteosarcoma Patients , 2005, Journal of pediatric hematology/oncology.

[72]  Moshe Talpaz,et al.  Dasatinib (BMS-354825) Tyrosine Kinase Inhibitor Suppresses Invasion and Induces Cell Cycle Arrest and Apoptosis of Head and Neck Squamous Cell Carcinoma and Non–Small Cell Lung Cancer Cells , 2005, Clinical Cancer Research.

[73]  Wen-Hui Weng,et al.  Prognostic Impact of Immunohistochemical Expression of Ezrin in Highly Malignant Soft Tissue Sarcomas , 2005, Clinical Cancer Research.

[74]  O. Fodstad,et al.  Matrix metalloproteinases participate in osteosarcoma invasion. , 2005, The Journal of surgical research.

[75]  Hans Clevers,et al.  Canonical Wnt signaling in differentiated osteoblasts controls osteoclast differentiation. , 2005, Developmental cell.

[76]  A. Vaheri,et al.  Ezrin in primary cutaneous melanoma , 2005, Modern Pathology.

[77]  A. Huvos,et al.  Messenger RNA Expression Levels of CXCR4 Correlate with Metastatic Behavior and Outcome in Patients with Osteosarcoma , 2005, Clinical Cancer Research.

[78]  E. Kleinerman,et al.  Increased Fas Expression Reduces the Metastatic Potential of Human Osteosarcoma Cells , 2004, Clinical Cancer Research.

[79]  F. Giancotti,et al.  Integrin β4 signaling promotes tumor angiogenesis , 2004 .

[80]  Michael D Schaller,et al.  The interplay between Src and integrins in normal and tumor biology , 2004, Oncogene.

[81]  D. Auclair,et al.  BAY 43-9006 Exhibits Broad Spectrum Oral Antitumor Activity and Targets the RAF/MEK/ERK Pathway and Receptor Tyrosine Kinases Involved in Tumor Progression and Angiogenesis , 2004, Cancer Research.

[82]  E. Kohn,et al.  Anoikis: Cancer and the homeless cell , 2004, Nature.

[83]  F. Watt,et al.  Switch from αvβ5 to αvβ6 integrin expression protects squamous cell carcinomas from anoikis , 2004, The Journal of cell biology.

[84]  Biao He,et al.  Wnt Inhibitory Factor-1 Is Silenced by Promoter Hypermethylation in Human Lung Cancer , 2004, Cancer Research.

[85]  M. Kreuter,et al.  Prognostic relevance of increased angiogenesis in osteosarcoma. , 2004, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[86]  D. Heymann,et al.  Bisphosphonates: new therapeutic agents for the treatment of bone tumors. , 2004, Trends in molecular medicine.

[87]  Ruud H. Brakenhoff,et al.  Dissecting the metastatic cascade , 2004, Nature Reviews Cancer.

[88]  K. Hunter Ezrin, a key component in tumor metastasis. , 2004, Trends in molecular medicine.

[89]  S. Kumta,et al.  Alendronate regulates cell invasion and MMP‐2 secretion in human osteosarcoma cell lines , 2004, Pediatric blood & cancer.

[90]  J. Healey,et al.  Dickkopf 3 inhibits invasion and motility of Saos-2 osteosarcoma cells by modulating the Wnt-beta-catenin pathway. , 2004, Cancer research.

[91]  T. Meshel,et al.  The expression of the chemokine receptor CXCR3 and its ligand, CXCL10, in human breast adenocarcinoma cell lines. , 2004, Immunology letters.

[92]  A. Huvos,et al.  Expression of LDL receptor‐related protein 5 (LRP5) as a novel marker for disease progression in high‐grade osteosarcoma , 2004, International journal of cancer.

[93]  Stephen M Hewitt,et al.  The membrane-cytoskeleton linker ezrin is necessary for osteosarcoma metastasis , 2004, Nature Medicine.

[94]  D. Mikulic,et al.  TUMOR ANGIOGENESIS AND OUTCOME IN OSTEOSARCOMA , 2004, Pediatric hematology and oncology.

[95]  Jason L. Townson,et al.  Ineffectiveness of Doxorubicin Treatment on Solitary Dormant Mammary Carcinoma Cells or Late-developing Metastases , 2003, Breast Cancer Research and Treatment.

[96]  P. Meltzer,et al.  Biology of childhood osteogenic sarcoma and potential targets for therapeutic development: meeting summary. , 2003, Clinical cancer research : an official journal of the American Association for Cancer Research.

[97]  B. McIntyre,et al.  Acquisition of anoikis resistance in human osteosarcoma cells. , 2003, European journal of cancer.

[98]  H. Clevers,et al.  Survivin and molecular pathogenesis of colorectal cancer , 2003, The Lancet.

[99]  Yoshiaki Kawano,et al.  Secreted antagonists of the Wnt signalling pathway , 2003, Journal of Cell Science.

[100]  T. Salo,et al.  Inhibition of matrix metalloproteinase-14 in osteosarcoma cells by clodronate. , 2003, The Journal of surgical research.

[101]  W. Schmiegel,et al.  Adeno-associated virus mediated gene transfer of endostatin inhibits angiogenesis and tumor growth in vivo , 2003 .

[102]  Larry Kedes,et al.  HES and HERP families: Multiple effectors of the notch signaling pathway , 2003, Journal of cellular physiology.

[103]  Andreas Friedl,et al.  Phase I pharmacokinetic and pharmacodynamic study of recombinant human endostatin in patients with advanced solid tumors. , 2003, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[104]  F. Nestle,et al.  Expression of CXC chemokine receptor-4 enhances the pulmonary metastatic potential of murine B16 melanoma cells. , 2002, Cancer research.

[105]  A. Montag,et al.  Cytoplasmic and/or nuclear accumulation of the β‐catenin protein is a frequent event in human osteosarcoma , 2002, International journal of cancer.

[106]  Gordon Stamp,et al.  Multiple actions of the chemokine CXCL12 on epithelial tumor cells in human ovarian cancer. , 2002, Cancer research.

[107]  L. Ellis,et al.  Phase I study of recombinant human endostatin in patients with advanced solid tumors. , 2002, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[108]  Donald W Kufe,et al.  Phase I clinical trial of recombinant human endostatin administered as a short intravenous infusion repeated daily. , 2002, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[109]  S. Steinberg,et al.  Treatment of Metastatic Osteosarcoma With the Somatostatin Analog OncoLar: Significant Reduction of Insulin-Like Growth Factor-1 Serum Levels , 2002, Journal of pediatric hematology/oncology.

[110]  E. Kleinerman,et al.  Fas expression inversely correlates with metastatic potential in osteosarcoma cells. , 2002, Oncology reports.

[111]  S. Hewitt,et al.  A randomized controlled trial of octreotide pamoate long-acting release and carboplatin versus carboplatin alone in dogs with naturally occurring osteosarcoma: evaluation of insulin-like growth factor suppression and chemotherapy. , 2002, Clinical cancer research : an official journal of the American Association for Cancer Research.

[112]  N. Muzyczka,et al.  Adeno-associated virus–mediated gene transfer of endostatin inhibits angiogenesis and tumor growth in vivo , 2002, Cancer Gene Therapy.

[113]  Yasuhito Kato,et al.  Relationship between expression of matrix metalloproteinase-2 and matrix metalloproteinase-9 and invasion ability of cervical cancer cells. , 2002, Oncology reports.

[114]  P. Krammer,et al.  Tumor Immunology , 2018, Medical Immunology.

[115]  N. Longo,et al.  Expression of Functional Chemokine Receptors CXCR3 and CXCR4 on Human Melanoma Cells* , 2001, The Journal of Biological Chemistry.

[116]  L. Trusolino,et al.  A Signaling Adapter Function for α6β4 Integrin in the Control of HGF-Dependent Invasive Growth , 2001, Cell.

[117]  G. Wilding,et al.  Tissue examination to monitor antiangiogenic therapy: a phase I clinical trial with endostatin. , 2001, Clinical cancer research : an official journal of the American Association for Cancer Research.

[118]  R. D'Amato,et al.  Continuous administration of endostatin by intraperitoneally implanted osmotic pump improves the efficacy and potency of therapy in a mouse xenograft tumor model. , 2001, Cancer research.

[119]  P. Murphy,et al.  Chemokines and the molecular basis of cancer metastasis. , 2001, The New England journal of medicine.

[120]  A. Feldman,et al.  Effect of retroviral endostatin gene transfer on subcutaneous and intraperitoneal growth of murine tumors. , 2001, Journal of the National Cancer Institute.

[121]  P. Leavey,et al.  Lack of Prognostic Significance of Intratumoral Angiogenesis in Nonmetastatic Osteosarcoma , 2001, Journal of pediatric hematology/oncology.

[122]  Y. Soini,et al.  Expression of MMP2, MMP9, MT1‐MMP, TIMP1, and TIMP2 mRNA in valvular lesions of the heart , 2001, The Journal of pathology.

[123]  E. Kleinerman,et al.  Interleukin (IL)-12 and IL-12 gene transfer up-regulate Fas expression in human osteosarcoma and breast cancer cells. , 2001, Cancer research.

[124]  P. Meltzer,et al.  Metastasis-associated differences in gene expression in a murine model of osteosarcoma. , 2001, Cancer research.

[125]  J. Schölmerich,et al.  Apoptotic signaling during initiation of detachment-induced apoptosis ("anoikis") of primary human intestinal epithelial cells. , 2001, Cell growth & differentiation : the molecular biology journal of the American Association for Cancer Research.

[126]  T. Mcclanahan,et al.  Involvement of chemokine receptors in breast cancer metastasis , 2001, Nature.

[127]  T. Danciu,et al.  Caveolin‐Enriched Membrane Signaling Complexes in Human and Murine Osteoblasts , 2000, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research.

[128]  Shigeyoshi Itohara,et al.  Matrix metalloproteinase-9 triggers the angiogenic switch during carcinogenesis , 2000, Nature Cell Biology.

[129]  G. Murphy,et al.  Functional Significance of MMP-9 in Tumor Necrosis Factor-Induced Proliferation and Branching Morphogenesis of Mammary Epithelial Cells. , 2000, Endocrinology.

[130]  P. Polakis Wnt signaling and cancer. , 2000, Genes & development.

[131]  V. Sukhatme,et al.  Synergy between angiostatin and endostatin: inhibition of ovarian cancer growth. , 2000, Cancer research.

[132]  J. Gołąb Interleukin 18--interferon gamma inducing factor--a novel player in tumour immunotherapy? , 2000, Cytokine.

[133]  W. Fridman,et al.  Interleukin-18: biological properties and clinical implications. , 2000, European cytokine network.

[134]  W. Kiess,et al.  Insulin-like growth factor-I inhibits the progression of human U-2 OS osteosarcoma cells towards programmed cell death through interaction with the IGF-I receptor. , 2000, Cellular and molecular biology.

[135]  F. Higashino,et al.  Vascular endothelial growth factor expression in untreated osteosarcoma is predictive of pulmonary metastasis and poor prognosis. , 2000, Clinical cancer research : an official journal of the American Association for Cancer Research.

[136]  D. Dorfman,et al.  The chemokine receptor CXCR3 is expressed in a subset of B-cell lymphomas and is a marker of B-cell chronic lymphocytic leukemia. , 2000, Blood.

[137]  J. Wigginton,et al.  IFN-γ-Dependent Delay of In Vivo Tumor Progression by Fas Overexpression on Murine Renal Cancer Cells1 2 , 2000, The Journal of Immunology.

[138]  T. Pawlik,et al.  Mouse endostatin inhibits the formation of lung and liver metastases. , 1999, Cancer research.

[139]  M. Kurimoto,et al.  Interleukin‐18 acts as an angiogenesis and tumor suppressor , 1999, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[140]  河合 伸泰 Serum Free Insulin-Like Growth Factor I(IGF-I),Total IGF-I,and IGF- Binding Protein-3 Concentrations in Normal Children and Children with Growth Hormone Deficiency , 1999 .

[141]  Y. Oshika,et al.  Cell-retained isoforms of vascular endothelial growth factor (VEGF) are correlated with poor prognosis in osteosarcoma. , 1999, European journal of cancer.

[142]  A. Gautreau,et al.  Ezrin, a plasma membrane-microfilament linker, signals cell survival through the phosphatidylinositol 3-kinase/Akt pathway. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[143]  V. Sukhatme,et al.  Cloning, Expression, andin VitroActivity of Human Endostatin , 1999 .

[144]  Paul Polakis,et al.  The metalloproteinase matrilysin is a target of β-catenin transactivation in intestinal tumors , 1999, Oncogene.

[145]  P. Mangeat,et al.  ERM proteins in cell adhesion and membrane dynamics. , 1999, Trends in cell biology.

[146]  S. Artavanis-Tsakonas,et al.  Notch signaling: cell fate control and signal integration in development. , 1999, Science.

[147]  Frank McCormick,et al.  β-Catenin regulates expression of cyclin D1 in colon carcinoma cells , 1999, Nature.

[148]  M. Gondo,et al.  Systemic inhibition of tumor growth and tumor metastases by intramuscular administration of the endostatin gene , 1999, Nature Biotechnology.

[149]  J. Nathans,et al.  A new secreted protein that binds to Wnt proteins and inhibits their activites , 1999, Nature.

[150]  Yusuke Nakamura,et al.  Frequent β‐Catenin Abnormalities in Bone and Soft‐tissue Tumors , 1999, Japanese journal of cancer research : Gann.

[151]  L. Owen-Schaub,et al.  Fas and Fas Ligand Interactions Suppress Melanoma Lung Metastasis , 1998, The Journal of experimental medicine.

[152]  J. Wigginton,et al.  Molecular mechanisms of immune-mediated lysis of murine renal cancer: differential contributions of perforin-dependent versus Fas-mediated pathways in lysis by NK and T cells. , 1998, Journal of immunology.

[153]  A. Sparks,et al.  Identification of c-MYC as a target of the APC pathway. , 1998, Science.

[154]  D. Campanacci,et al.  Expression of transforming growth factor β isoforms in osteosarcoma variants: association of tgfβ1 with high‐grade osteosarcomas , 1998 .

[155]  J. Folkman,et al.  Expression of angiostatin cDNA in a murine fibrosarcoma suppresses primary tumor growth and produces long-term dormancy of metastases. , 1998, The Journal of clinical investigation.

[156]  Ø. Bruland,et al.  On the current management of osteosarcoma. A critical evaluation and a proposal for a modified treatment strategy. , 1997, European journal of cancer.

[157]  T. Tanimoto,et al.  Interleukin 18 enhances Fas ligand expression and induces apoptosis in Fas-expressing human myelomonocytic KG-1 cells. , 1997, Anticancer research.

[158]  William Arbuthnot Sir Lane,et al.  Endostatin: An Endogenous Inhibitor of Angiogenesis and Tumor Growth , 1997, Cell.

[159]  T. Sasaki,et al.  Regulation mechanism of ERM (ezrin/radixin/moesin) protein/plasma membrane association: possible involvement of phosphatidylinositol turnover and Rho-dependent signaling pathway , 1996, The Journal of cell biology.

[160]  M. Maa,et al.  Potentiation of epidermal growth factor receptor-mediated oncogenesis by c-Src: implications for the etiology of multiple human cancers. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[161]  Z. Werb,et al.  Suppression of ICE and apoptosis in mammary epithelial cells by extracellular matrix , 1995, Science.

[162]  Lars Holmgren,et al.  Angiostatin: A novel angiogenesis inhibitor that mediates the suppression of metastases by a lewis lung carcinoma , 1994, Cell.

[163]  S. Hirschfeld,et al.  Human osteosarcoma cell lines are dependent on insulin-like growth factor I for in vitro growth. , 1994, Cancer research.

[164]  C. Heldin,et al.  Identification of two juxtamembrane autophosphorylation sites in the PDGF beta‐receptor; involvement in the interaction with Src family tyrosine kinases. , 1993, The EMBO journal.

[165]  R. Bell,et al.  Inhibition of metastatic behavior of murine osteosarcoma by hypophysectomy. , 1992, Journal of the National Cancer Institute.

[166]  J. Folkman,et al.  The role of angiogenesis in tumor growth. , 1992, Seminars in cancer biology.

[167]  Richard G. W. Anderson,et al.  Caveolin, a protein component of caveolae membrane coats , 1992, Cell.

[168]  D. Goeddel,et al.  Vascular endothelial growth factor is a secreted angiogenic mitogen. , 1989, Science.

[169]  H. Inoue,et al.  Amplification of Both c‐myc and c‐raf‐1 Oncogenes in a Human Osteosarcoma , 1989, Japanese journal of cancer research : Gann.

[170]  W. Thompson,et al.  Tumours acquire their vasculature by vessel incorporation, not vessel ingrowth , 1987, The Journal of pathology.

[171]  M. Mison,et al.  Osteosarcoma , 1985, The Lancet.

[172]  H. Dvorak,et al.  Tumor cells secrete a vascular permeability factor that promotes accumulation of ascites fluid. , 1983, Science.

[173]  G. Rosen,et al.  Preoperative chemotherapy for osteogenic sarcoma: Selection of postoperative adjuvant chemotherapy based on the response of the primary tumor to preoperative chemotherapy , 1982, Cancer.

[174]  W. Enneking,et al.  A System for the Surgical Staging of Musculoskeletal Sarcoma , 1980, Clinical orthopaedics and related research.

[175]  L. Dehner,et al.  Metastatic osteosarcoma to lung. A clinicopathologic study of surgical biopsies and resections , 1977 .

[176]  C. H. Price,et al.  The metastatic patterns of osteosarcoma. , 1975, British Journal of Cancer.

[177]  D. Dorfman,et al.  lymphomas and is a marker of B-cell chronic lymphocytic leukemia The chemokine receptor CXCR3 is expressed in a subset of B-cell , 2013 .

[178]  Sun-Mi Park,et al.  CD95 promotes tumour growth , 2011, Nature.

[179]  D. Heymann Bone Cancer Progression and Therapeutic Approaches , 2009 .

[180]  R. Baron,et al.  Minireview: Targeting the Wnt/-Catenin Pathway to Regulate Bone Formation in the Adult Skeleton , 2007 .

[181]  C. Bokemeyer,et al.  Dasatinib (BMS-354825), a dual SRC/ABL kinase inhibitor, inhibits the kinase activity of wild-type, juxtamembrane, and activation loop mutant KIT isoforms associated with human malignancies. , 2006, Cancer research.

[182]  T. Ishida,et al.  Cytoplasmic and/or nuclear staining of beta-catenin is associated with lung metastasis , 2004, Clinical & Experimental Metastasis.

[183]  S. Frisch,et al.  Anoikis mechanisms. , 2001, Current opinion in cell biology.

[184]  S. Ferrari,et al.  Pattern of relapse in patients with osteosarcoma of the extremities treated with neoadjuvant chemotherapy. , 2001, European journal of cancer.

[185]  A. Al-Mehdi,et al.  Intravascular origin of metastasis from the proliferation of endothelium-attached tumor cells: a new model for metastasis , 2000, Nature Medicine.

[186]  J. Hwang,et al.  Functional significance of MMP-9 in tumor necrosis factor-induced proliferation and branching morphogenesis of mammary epithelial cells. , 2000, Endocrinology.

[187]  V. Sukhatme,et al.  Cloning, expression, and in vitro activity of human endostatin. , 1999, Biochemical and biophysical research communications.

[188]  S. Kanzaki,et al.  Serum free insulin-like growth factor I (IGF-I), total IGF-I, and IGF-binding protein-3 concentrations in normal children and children with growth hormone deficiency. , 1999, The Journal of clinical endocrinology and metabolism.

[189]  Lars Holmgren,et al.  Dormancy of micrometastases: Balanced proliferation and apoptosis in the presence of angiogenesis suppression , 1995, Nature Medicine.

[190]  Z. Werb,et al.  Suppression of ICE and apoptosis in mammary epithelial cells by the extracellular matrix and the cytoskeleton , 1995 .

[191]  K. Danø,et al.  Plasminogen activators, tissue degradation, and cancer. , 1985, Advances in cancer research.