Fast and Scalable Algorithm for Detection of Structural Breaks in Big VAR Models

Many real time series datasets exhibit structural changes over time. A popular model for capturing their temporal dependence is that of vector autoregressions (VAR), which can accommodate structura...

[1]  P. Fryzlewicz Tail-greedy bottom-up data decompositions and fast multiple change-point detection , 2018, The Annals of Statistics.

[2]  Piotr Fryzlewicz,et al.  Multiple‐change‐point detection for high dimensional time series via sparsified binary segmentation , 2015, 1611.08639.

[3]  V. Liebscher,et al.  Consistencies and rates of convergence of jump-penalized least squares estimators , 2009, 0902.4838.

[4]  G. Michailidis,et al.  Regularized estimation in sparse high-dimensional time series models , 2013, 1311.4175.

[5]  David S. Matteson,et al.  A Nonparametric Approach for Multiple Change Point Analysis of Multivariate Data , 2013, 1306.4933.

[6]  Alexander Aue,et al.  Detecting and dating structural breaks in functional data without dimension reduction , 2015, 1511.04020.

[7]  Deniz Erdogmus,et al.  Decoding of multichannel EEG activity from the visual cortex in response to pseudorandom binary sequences of visual stimuli , 2011, Int. J. Imaging Syst. Technol..

[8]  A. Aue,et al.  Structural breaks in time series , 2013 .

[9]  Ali Shojaie,et al.  Joint Structural Break Detection and Parameter Estimation in High-Dimensional Nonstationary VAR Models , 2017, Journal of the American Statistical Association.

[10]  George Michailidis,et al.  Change point estimation in high dimensional Markov random‐field models , 2014, Journal of the Royal Statistical Society. Series B, Statistical methodology.

[11]  C. Ing,et al.  Threshold Estimation via Group Orthogonal Greedy Algorithm , 2017 .

[12]  H. Dette,et al.  Detection of Multiple Structural Breaks in Multivariate Time Series , 2013, 1309.1309.

[13]  Tengyao Wang,et al.  High dimensional change point estimation via sparse projection , 2016, 1606.06246.

[14]  George Michailidis,et al.  Regularized Estimation and Testing for High-Dimensional Multi-Block Vector-Autoregressive Models , 2017, J. Mach. Learn. Res..

[15]  George Michailidis,et al.  Multiple Change Points Detection in Low Rank and Sparse High Dimensional Vector Autoregressive Models , 2020, IEEE Transactions on Signal Processing.

[16]  P. Fryzlewicz,et al.  Multiple‐change‐point detection for auto‐regressive conditional heteroscedastic processes , 2014 .

[17]  N. Chan,et al.  Group LASSO for Structural Break Time Series , 2014 .

[18]  Piotr Fryzlewicz,et al.  Simultaneous multiple change-point and factor analysis for high-dimensional time series , 2016, Journal of Econometrics.

[19]  Piotr Fryzlewicz,et al.  Wild binary segmentation for multiple change-point detection , 2014, 1411.0858.

[20]  Z. Harchaoui,et al.  Multiple Change-Point Estimation With a Total Variation Penalty , 2010 .

[21]  Haeran Cho,et al.  Change-point detection in panel data via double CUSUM statistic , 2016, 1611.08631.

[22]  H. Ombao,et al.  SLEX Analysis of Multivariate Nonstationary Time Series , 2005 .

[23]  Kam Chung Wong,et al.  Lasso guarantees for $\beta$-mixing heavy-tailed time series , 2017, 1708.01505.

[24]  Marc Teboulle,et al.  A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems , 2009, SIAM J. Imaging Sci..

[25]  R. Tibshirani,et al.  Sparsity and smoothness via the fused lasso , 2005 .

[26]  Venkata K. Jandhyala,et al.  An Efficient Two Step Algorithm for High Dimensional Change Point Regression Models Without Grid Search , 2018, J. Mach. Learn. Res..

[27]  Venkata K. Jandhyala,et al.  Inference on the change point under a high dimensional sparse mean shift , 2021 .

[28]  Po-Ling Loh,et al.  High-dimensional regression with noisy and missing data: Provable guarantees with non-convexity , 2011, NIPS.

[29]  P. Fearnhead,et al.  Optimal detection of changepoints with a linear computational cost , 2011, 1101.1438.

[30]  Richard A. Davis,et al.  Structural Break Estimation for Nonstationary Time Series Models , 2006 .