MOEA/D: A Multiobjective Evolutionary Algorithm Based on Decomposition
暂无分享,去创建一个
Qingfu Zhang | Hui Li | Qingfu Zhang | Hui Li
[1] E. Polak. On the Approximation of Solutions to Multiple Criteria Decision Making Problems , 1976 .
[2] E. Polak,et al. On Multicriteria Optimization , 1976 .
[3] J. D. Schaffer,et al. Multiple Objective Optimization with Vector Evaluated Genetic Algorithms , 1985, ICGA.
[4] Marc Despontin,et al. Multiple Criteria Optimization: Theory, Computation, and Application, Ralph E. Steuer (Ed.). Wiley, Palo Alto, CA (1986) , 1987 .
[5] Siegfried Helbig,et al. On a constructive approximation of the efficient outcomes in bicriterion vector optimization , 1994, J. Glob. Optim..
[6] J. Dennis,et al. NORMAL-BOUNDARY INTERSECTION: AN ALTERNATE METHOD FOR GENERATING PARETO OPTIMAL POINTS IN MULTICRITERIA OPTIMIZATION PROBLEMS , 1996 .
[7] Mitsuo Gen,et al. Genetic algorithms and engineering design , 1997 .
[8] Hisao Ishibuchi,et al. A multi-objective genetic local search algorithm and its application to flowshop scheduling , 1998, IEEE Trans. Syst. Man Cybern. Part C.
[9] Kaisa Miettinen,et al. Nonlinear multiobjective optimization , 1998, International series in operations research and management science.
[10] Peter J. Bentley,et al. Finding Acceptable Solutions in the Pareto-Optimal Range using Multiobjective Genetic Algorithms , 1998 .
[11] John E. Dennis,et al. Normal-Boundary Intersection: A New Method for Generating the Pareto Surface in Nonlinear Multicriteria Optimization Problems , 1998, SIAM J. Optim..
[12] David Corne,et al. The Pareto archived evolution strategy: a new baseline algorithm for Pareto multiobjective optimisation , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).
[13] Lothar Thiele,et al. Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach , 1999, IEEE Trans. Evol. Comput..
[14] Qingfu Zhang,et al. An orthogonal genetic algorithm for multimedia multicast routing , 1999, IEEE Trans. Evol. Comput..
[15] Lothar Thiele,et al. Comparison of Multiobjective Evolutionary Algorithms: Empirical Results , 2000, Evolutionary Computation.
[16] Carlos A. Coello Coello,et al. An updated survey of GA-based multiobjective optimization techniques , 2000, CSUR.
[17] Gary B. Lamont,et al. Multiobjective Evolutionary Algorithms: Analyzing the State-of-the-Art , 2000, Evolutionary Computation.
[18] Mitsuo Gen,et al. Specification of Genetic Search Directions in Cellular Multi-objective Genetic Algorithms , 2001, EMO.
[19] Bernhard Sendhoff,et al. Adapting Weighted Aggregation for Multiobjective Evolution Strategies , 2001, EMO.
[20] Wei Chen,et al. Piecewise quadratic approximation of the non-dominated set for bi-criteria programs , 2001 .
[21] Kalyanmoy Deb,et al. A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..
[22] Gary B. Lamont,et al. Evolutionary Algorithms for Solving Multi-Objective Problems , 2002, Genetic Algorithms and Evolutionary Computation.
[23] Marco Laumanns,et al. SPEA2: Improving the Strength Pareto Evolutionary Algorithm For Multiobjective Optimization , 2002 .
[24] Ian C. Parmee,et al. Preferences and their application in evolutionary multiobjective optimization , 2002, IEEE Trans. Evol. Comput..
[25] Andrzej Jaszkiewicz,et al. On the performance of multiple-objective genetic local search on the 0/1 knapsack problem - a comparative experiment , 2002, IEEE Trans. Evol. Comput..
[26] Marco Laumanns,et al. Scalable multi-objective optimization test problems , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).
[27] David W. Corne,et al. Properties of an adaptive archiving algorithm for storing nondominated vectors , 2003, IEEE Trans. Evol. Comput..
[28] Thomas Stützle,et al. A Two-Phase Local Search for the Biobjective Traveling Salesman Problem , 2003, EMO.
[29] E. Hughes. Multiple single objective Pareto sampling , 2003, The 2003 Congress on Evolutionary Computation, 2003. CEC '03..
[30] Dirk Thierens,et al. The balance between proximity and diversity in multiobjective evolutionary algorithms , 2003, IEEE Trans. Evol. Comput..
[31] A. Messac,et al. The normalized normal constraint method for generating the Pareto frontier , 2003 .
[32] Marco Laumanns,et al. Performance assessment of multiobjective optimizers: an analysis and review , 2003, IEEE Trans. Evol. Comput..
[33] Gary G. Yen,et al. Rank-density-based multiobjective genetic algorithm and benchmark test function study , 2003, IEEE Trans. Evol. Comput..
[34] M. Morris. The Design and Analysis of Computer Experiments , 2004 .
[35] Carlos A. Coello Coello,et al. Handling multiple objectives with particle swarm optimization , 2004, IEEE Transactions on Evolutionary Computation.
[36] Bernhard Sendhoff,et al. Voronoi-based estimation of distribution algorithm for multi-objective optimization , 2004, Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753).
[37] A. Messac,et al. Smart Pareto filter: obtaining a minimal representation of multiobjective design space , 2004 .
[38] S. Ruzika,et al. Approximation Methods in Multiobjective Programming , 2005 .
[39] Tong Heng Lee,et al. Multiobjective Evolutionary Algorithms and Applications (Advanced Information and Knowledge Processing) , 2005 .
[40] Tong Heng Lee,et al. Multiobjective Evolutionary Algorithms and Applications , 2005, Advanced Information and Knowledge Processing.
[41] Matthias Ehrgott,et al. Multicriteria Optimization (2. ed.) , 2005 .
[42] Qingfu Zhang,et al. Modelling the Regularity in an Estimation of Distribution Algorithm for Continuous Multiobjective Optimization with Variable Linkages , 2006 .
[43] R. K. Ursem. Multi-objective Optimization using Evolutionary Algorithms , 2009 .