MOEA/D: A Multiobjective Evolutionary Algorithm Based on Decomposition

Decomposition is a basic strategy in traditional multiobjective optimization. However, it has not yet been widely used in multiobjective evolutionary optimization. This paper proposes a multiobjective evolutionary algorithm based on decomposition (MOEA/D). It decomposes a multiobjective optimization problem into a number of scalar optimization subproblems and optimizes them simultaneously. Each subproblem is optimized by only using information from its several neighboring subproblems, which makes MOEA/D have lower computational complexity at each generation than MOGLS and nondominated sorting genetic algorithm II (NSGA-II). Experimental results have demonstrated that MOEA/D with simple decomposition methods outperforms or performs similarly to MOGLS and NSGA-II on multiobjective 0-1 knapsack problems and continuous multiobjective optimization problems. It has been shown that MOEA/D using objective normalization can deal with disparately-scaled objectives, and MOEA/D with an advanced decomposition method can generate a set of very evenly distributed solutions for 3-objective test instances. The ability of MOEA/D with small population, the scalability and sensitivity of MOEA/D have also been experimentally investigated in this paper.

[1]  E. Polak On the Approximation of Solutions to Multiple Criteria Decision Making Problems , 1976 .

[2]  E. Polak,et al.  On Multicriteria Optimization , 1976 .

[3]  J. D. Schaffer,et al.  Multiple Objective Optimization with Vector Evaluated Genetic Algorithms , 1985, ICGA.

[4]  Marc Despontin,et al.  Multiple Criteria Optimization: Theory, Computation, and Application, Ralph E. Steuer (Ed.). Wiley, Palo Alto, CA (1986) , 1987 .

[5]  Siegfried Helbig,et al.  On a constructive approximation of the efficient outcomes in bicriterion vector optimization , 1994, J. Glob. Optim..

[6]  J. Dennis,et al.  NORMAL-BOUNDARY INTERSECTION: AN ALTERNATE METHOD FOR GENERATING PARETO OPTIMAL POINTS IN MULTICRITERIA OPTIMIZATION PROBLEMS , 1996 .

[7]  Mitsuo Gen,et al.  Genetic algorithms and engineering design , 1997 .

[8]  Hisao Ishibuchi,et al.  A multi-objective genetic local search algorithm and its application to flowshop scheduling , 1998, IEEE Trans. Syst. Man Cybern. Part C.

[9]  Kaisa Miettinen,et al.  Nonlinear multiobjective optimization , 1998, International series in operations research and management science.

[10]  Peter J. Bentley,et al.  Finding Acceptable Solutions in the Pareto-Optimal Range using Multiobjective Genetic Algorithms , 1998 .

[11]  John E. Dennis,et al.  Normal-Boundary Intersection: A New Method for Generating the Pareto Surface in Nonlinear Multicriteria Optimization Problems , 1998, SIAM J. Optim..

[12]  David Corne,et al.  The Pareto archived evolution strategy: a new baseline algorithm for Pareto multiobjective optimisation , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[13]  Lothar Thiele,et al.  Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach , 1999, IEEE Trans. Evol. Comput..

[14]  Qingfu Zhang,et al.  An orthogonal genetic algorithm for multimedia multicast routing , 1999, IEEE Trans. Evol. Comput..

[15]  Lothar Thiele,et al.  Comparison of Multiobjective Evolutionary Algorithms: Empirical Results , 2000, Evolutionary Computation.

[16]  Carlos A. Coello Coello,et al.  An updated survey of GA-based multiobjective optimization techniques , 2000, CSUR.

[17]  Gary B. Lamont,et al.  Multiobjective Evolutionary Algorithms: Analyzing the State-of-the-Art , 2000, Evolutionary Computation.

[18]  Mitsuo Gen,et al.  Specification of Genetic Search Directions in Cellular Multi-objective Genetic Algorithms , 2001, EMO.

[19]  Bernhard Sendhoff,et al.  Adapting Weighted Aggregation for Multiobjective Evolution Strategies , 2001, EMO.

[20]  Wei Chen,et al.  Piecewise quadratic approximation of the non-dominated set for bi-criteria programs , 2001 .

[21]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[22]  Gary B. Lamont,et al.  Evolutionary Algorithms for Solving Multi-Objective Problems , 2002, Genetic Algorithms and Evolutionary Computation.

[23]  Marco Laumanns,et al.  SPEA2: Improving the Strength Pareto Evolutionary Algorithm For Multiobjective Optimization , 2002 .

[24]  Ian C. Parmee,et al.  Preferences and their application in evolutionary multiobjective optimization , 2002, IEEE Trans. Evol. Comput..

[25]  Andrzej Jaszkiewicz,et al.  On the performance of multiple-objective genetic local search on the 0/1 knapsack problem - a comparative experiment , 2002, IEEE Trans. Evol. Comput..

[26]  Marco Laumanns,et al.  Scalable multi-objective optimization test problems , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[27]  David W. Corne,et al.  Properties of an adaptive archiving algorithm for storing nondominated vectors , 2003, IEEE Trans. Evol. Comput..

[28]  Thomas Stützle,et al.  A Two-Phase Local Search for the Biobjective Traveling Salesman Problem , 2003, EMO.

[29]  E. Hughes Multiple single objective Pareto sampling , 2003, The 2003 Congress on Evolutionary Computation, 2003. CEC '03..

[30]  Dirk Thierens,et al.  The balance between proximity and diversity in multiobjective evolutionary algorithms , 2003, IEEE Trans. Evol. Comput..

[31]  A. Messac,et al.  The normalized normal constraint method for generating the Pareto frontier , 2003 .

[32]  Marco Laumanns,et al.  Performance assessment of multiobjective optimizers: an analysis and review , 2003, IEEE Trans. Evol. Comput..

[33]  Gary G. Yen,et al.  Rank-density-based multiobjective genetic algorithm and benchmark test function study , 2003, IEEE Trans. Evol. Comput..

[34]  M. Morris The Design and Analysis of Computer Experiments , 2004 .

[35]  Carlos A. Coello Coello,et al.  Handling multiple objectives with particle swarm optimization , 2004, IEEE Transactions on Evolutionary Computation.

[36]  Bernhard Sendhoff,et al.  Voronoi-based estimation of distribution algorithm for multi-objective optimization , 2004, Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753).

[37]  A. Messac,et al.  Smart Pareto filter: obtaining a minimal representation of multiobjective design space , 2004 .

[38]  S. Ruzika,et al.  Approximation Methods in Multiobjective Programming , 2005 .

[39]  Tong Heng Lee,et al.  Multiobjective Evolutionary Algorithms and Applications (Advanced Information and Knowledge Processing) , 2005 .

[40]  Tong Heng Lee,et al.  Multiobjective Evolutionary Algorithms and Applications , 2005, Advanced Information and Knowledge Processing.

[41]  Matthias Ehrgott,et al.  Multicriteria Optimization (2. ed.) , 2005 .

[42]  Qingfu Zhang,et al.  Modelling the Regularity in an Estimation of Distribution Algorithm for Continuous Multiobjective Optimization with Variable Linkages , 2006 .

[43]  R. K. Ursem Multi-objective Optimization using Evolutionary Algorithms , 2009 .