Understanding Calibration of Deep Neural Networks for Medical Image Classification

[1]  R. Mudd,et al.  TCE: A Test-Based Approach to Measuring Calibration Error , 2023, UAI.

[2]  Ismail Ben Ayed,et al.  Calibrating segmentation networks with margin-based label smoothing , 2023, Medical Image Anal..

[3]  Boqing Gong,et al.  On Calibrating Semantic Segmentation Models: Analyses and An Algorithm , 2022, 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[4]  Pengcheng Xi,et al.  A Trustworthy Framework for Medical Image Analysis with Deep Learning , 2022, ArXiv.

[5]  Skylar E. Stolte,et al.  DOMINO: Domain-Aware Model Calibration in Medical Image Segmentation , 2022, MICCAI.

[6]  H. Greenspan,et al.  RadImageNet: An Open Radiologic Deep Learning Research Dataset for Effective Transfer Learning , 2022, Radiology. Artificial intelligence.

[7]  Antoine Bonnefoy,et al.  Calibrate to Interpret , 2022, ECML/PKDD.

[8]  Agostina J. Larrazabal,et al.  Maximum Entropy on Erroneous Predictions (MEEP): Improving model calibration for medical image segmentation , 2021, MICCAI.

[9]  Deepti R. Bathula,et al.  Towards Reducing Aleatoric Uncertainty for Medical Imaging Tasks , 2021, 2022 IEEE 19th International Symposium on Biomedical Imaging (ISBI).

[10]  Mohammad Rashedul Hasan,et al.  A Study of the Generalizability of Self-Supervised Representations , 2021, ArXiv.

[11]  Max A. Viergever,et al.  Explainable artificial intelligence (XAI) in deep learning-based medical image analysis , 2021, Medical Image Anal..

[12]  Leiting Chen,et al.  Rethinking pre-training on medical imaging , 2021, J. Vis. Commun. Image Represent..

[13]  Xiaohua Zhai,et al.  Revisiting the Calibration of Modern Neural Networks , 2021, NeurIPS.

[14]  A. Laio,et al.  Redundant representations help generalization in wide neural networks , , 2021, NeurIPS.

[15]  Bjoern H. Menze,et al.  Evaluating the Robustness of Self-Supervised Learning in Medical Imaging , 2021, ArXiv.

[16]  Shekoofeh Azizi,et al.  Big Self-Supervised Models Advance Medical Image Classification , 2021, 2021 IEEE/CVF International Conference on Computer Vision (ICCV).

[17]  Jasper Snoek,et al.  Second opinion needed: communicating uncertainty in medical machine learning , 2021, npj Digital Medicine.

[18]  Timothy M. Hospedales,et al.  How Well Do Self-Supervised Models Transfer? , 2020, 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[19]  Alexandre Hoang Thiery,et al.  Uncertainty Quantification and Deep Ensembles , 2020, NeurIPS.

[20]  Joseph Paul Cohen,et al.  COVID-19 Image Data Collection: Prospective Predictions Are the Future , 2020, The Journal of Machine Learning for Biomedical Imaging.

[21]  K. Kim,et al.  What Is COVID-19? , 2020, Frontiers for Young Minds.

[22]  Mauricio Reyes,et al.  Analyzing the Quality and Challenges of Uncertainty Estimations for Brain Tumor Segmentation , 2020, Frontiers in Neuroscience.

[23]  Joseph Paul Cohen,et al.  COVID-19 Image Data Collection , 2020, ArXiv.

[24]  Philip H. S. Torr,et al.  Calibrating Deep Neural Networks using Focal Loss , 2020, NeurIPS.

[25]  J. Gilmer,et al.  AugMix: A Simple Data Processing Method to Improve Robustness and Uncertainty , 2019, ICLR.

[26]  Purang Abolmaesumi,et al.  Confidence Calibration and Predictive Uncertainty Estimation for Deep Medical Image Segmentation , 2019, IEEE Transactions on Medical Imaging.

[27]  Florian Buettner,et al.  Towards Trustworthy Predictions from Deep Neural Networks with Fast Adversarial Calibration , 2019, AAAI.

[28]  M. Reyes,et al.  Assessing Reliability and Challenges of Uncertainty Estimations for Medical Image Segmentation , 2019, MICCAI.

[29]  Dawn Song,et al.  Using Self-Supervised Learning Can Improve Model Robustness and Uncertainty , 2019, NeurIPS.

[30]  Suyash P. Awate,et al.  A Bayesian Neural Net to Segment Images with Uncertainty Estimates and Good Calibration , 2019, IPMI.

[31]  Gopinath Chennupati,et al.  On Mixup Training: Improved Calibration and Predictive Uncertainty for Deep Neural Networks , 2019, NeurIPS.

[32]  Geoffrey E. Hinton,et al.  Similarity of Neural Network Representations Revisited , 2019, ICML.

[33]  C. Langlotz,et al.  A Roadmap for Foundational Research on Artificial Intelligence in Medical Imaging: From the 2018 NIH/RSNA/ACR/The Academy Workshop. , 2019, Radiology.

[34]  Jeremy Nixon,et al.  Measuring Calibration in Deep Learning , 2019, CVPR Workshops.

[35]  Jacob Roll,et al.  Evaluating model calibration in classification , 2019, AISTATS.

[36]  Jon Kleinberg,et al.  Transfusion: Understanding Transfer Learning for Medical Imaging , 2019, NeurIPS.

[37]  Kimin Lee,et al.  Using Pre-Training Can Improve Model Robustness and Uncertainty , 2019, ICML.

[38]  Thomas G. Dietterich,et al.  Deep Anomaly Detection with Outlier Exposure , 2018, ICLR.

[39]  Sébastien Ourselin,et al.  Aleatoric uncertainty estimation with test-time augmentation for medical image segmentation with convolutional neural networks , 2018, Neurocomputing.

[40]  Kate Saenko,et al.  RISE: Randomized Input Sampling for Explanation of Black-box Models , 2018, BMVC.

[41]  Max Welling,et al.  Rotation Equivariant CNNs for Digital Pathology , 2018, MICCAI.

[42]  Nikos Komodakis,et al.  Unsupervised Representation Learning by Predicting Image Rotations , 2018, ICLR.

[43]  Andrew H. Beck,et al.  Diagnostic Assessment of Deep Learning Algorithms for Detection of Lymph Node Metastases in Women With Breast Cancer , 2017, JAMA.

[44]  Hongyi Zhang,et al.  mixup: Beyond Empirical Risk Minimization , 2017, ICLR.

[45]  Kilian Q. Weinberger,et al.  On Calibration of Modern Neural Networks , 2017, ICML.

[46]  Andrea Vedaldi,et al.  Interpretable Explanations of Black Boxes by Meaningful Perturbation , 2017, 2017 IEEE International Conference on Computer Vision (ICCV).

[47]  Avanti Shrikumar,et al.  Learning Important Features Through Propagating Activation Differences , 2017, ICML.

[48]  Ross B. Girshick,et al.  Mask R-CNN , 2017, 1703.06870.

[49]  Max Welling,et al.  Visualizing Deep Neural Network Decisions: Prediction Difference Analysis , 2017, ICLR.

[50]  Charles Blundell,et al.  Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles , 2016, NIPS.

[51]  Nikos Komodakis,et al.  Wide Residual Networks , 2016, BMVC.

[52]  Jian Sun,et al.  Deep Residual Learning for Image Recognition , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[53]  Peter A. Flach,et al.  Novel Decompositions of Proper Scoring Rules for Classification: Score Adjustment as Precursor to Calibration , 2015, ECML/PKDD.

[54]  Brendan T. O'Connor,et al.  Posterior calibration and exploratory analysis for natural language processing models , 2015, EMNLP.

[55]  Johannes Gehrke,et al.  Intelligible Models for HealthCare: Predicting Pneumonia Risk and Hospital 30-day Readmission , 2015, KDD.

[56]  Zoubin Ghahramani,et al.  Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning , 2015, ICML.

[57]  Julien Cornebise,et al.  Weight Uncertainty in Neural Networks , 2015, ArXiv.

[58]  Alexei A. Efros,et al.  Unsupervised Visual Representation Learning by Context Prediction , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[59]  Jian Sun,et al.  Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[60]  Milos Hauskrecht,et al.  Obtaining Well Calibrated Probabilities Using Bayesian Binning , 2015, AAAI.

[61]  M. Kohler,et al.  Probability estimation with machine learning methods for dichotomous and multicategory outcome: Theory , 2014, Biometrical journal. Biometrische Zeitschrift.

[62]  Trevor Darrell,et al.  Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation , 2013, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[63]  Trevor Darrell,et al.  DeCAF: A Deep Convolutional Activation Feature for Generic Visual Recognition , 2013, ICML.

[64]  Geoffrey E. Hinton,et al.  ImageNet classification with deep convolutional neural networks , 2012, Commun. ACM.

[65]  Jihoon Kim,et al.  Calibrating predictive model estimates to support personalized medicine , 2011, J. Am. Medical Informatics Assoc..

[66]  A. Raftery,et al.  Strictly Proper Scoring Rules, Prediction, and Estimation , 2007 .

[67]  Carl E. Rasmussen,et al.  Evaluating Predictive Uncertainty Challenge , 2005, MLCW.

[68]  A. Ng Feature selection, L1 vs. L2 regularization, and rotational invariance , 2004, Twenty-first international conference on Machine learning - ICML '04.

[69]  A. H. Murphy,et al.  Reliability of Subjective Probability Forecasts of Precipitation and Temperature , 1977 .

[70]  L. Frenkel,et al.  Calibration of Medical Imaging Classification Systems with Weight Scaling , 2022, MICCAI.

[71]  Alessandro Bay,et al.  On the Dark Side of Calibration for Modern Neural Networks , 2021, ArXiv.

[72]  Nitish Srivastava,et al.  Dropout: a simple way to prevent neural networks from overfitting , 2014, J. Mach. Learn. Res..

[73]  Peter A. Flach,et al.  A Unified View of Performance Metrics: Translating Threshold Choice into Expected Classification Loss C` Esar Ferri , 2012 .

[74]  J Quinonero Candela,et al.  Machine Learning Challenges. Evaluating Predictive Uncertainty, Visual Object Classification, and Recognising Tectual Entailment , 2006, Lecture Notes in Computer Science.

[75]  John C. Platt,et al.  Probabilistic Outputs for Support vector Machines and Comparisons to Regularized Likelihood Methods , 1999 .

[76]  G. Brier VERIFICATION OF FORECASTS EXPRESSED IN TERMS OF PROBABILITY , 1950 .