Single Factor Analysis in MML Mixture Modelling
暂无分享,去创建一个
[1] G. McLachlan,et al. The EM algorithm and extensions , 1996 .
[2] Geoffrey E. Hinton,et al. Autoencoders, Minimum Description Length and Helmholtz Free Energy , 1993, NIPS.
[3] David L. Dowe,et al. Point Estimation Using the Kullback-Leibler Loss Function and MML , 1998, PAKDD.
[4] C. S. Wallace,et al. MML mixture modelling of multi-state, Poisson, von Mises circular and Gaussian distributions , 1997 .
[5] Matthew Self,et al. Bayesian Classification , 1988, AAAI.
[6] Geoffrey E. Hinton,et al. Modeling the manifolds of images of handwritten digits , 1997, IEEE Trans. Neural Networks.
[7] C. S. Wallace,et al. Circular clustering of protein dihedral angles by Minimum Message Length. , 1996, Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing.
[8] H. Aumann,et al. IRAS catalogues and atlases. Atlas of low-resolution spectra. , 1986 .
[9] A. F. Smith,et al. Statistical analysis of finite mixture distributions , 1986 .
[10] Waldemar W. Koczkodaj,et al. Advances in Computing and Information — ICCI '90 , 1990, Lecture Notes in Computer Science.
[11] C. S. Wallace,et al. Estimation and Inference by Compact Coding , 1987 .
[12] J. Neyman,et al. Consistent Estimates Based on Partially Consistent Observations , 1948 .
[13] C. S. Wallace,et al. Single-factor analysis by minimum message length estimation , 1992 .
[14] E. B. Andersen,et al. Modern factor analysis , 1961 .
[15] C. S. Wallace,et al. Bayesian Estimation of the Von Mises Concentration Parameter , 1996 .
[16] C. Beichman,et al. Infrared astronomical satellite (IRAS) catalogs and atlases. Volume 1: Explanatory supplement , 1988 .
[17] J. Stutz,et al. A Bayesian classification of the IRAS LRS Atlas , 1989 .
[18] C. S. Wallace,et al. Classification by Minimum-Message-Length Inference , 1991, ICCI.
[19] C. S. Wallace,et al. Resolving the Neyman-Scott problem by minimum message length , 1997 .
[20] C. S. Wallace,et al. An Information Measure for Classification , 1968, Comput. J..