Existence of solutions for a higher order Kirchhoff type problem with exponential critical growth

The higher order Kirchhoff type equation $$\int_{\mathbb{R}^{2m}}(|\nabla^m u|^2 +\sum_{\gamma=0}^{m-1}a_{\gamma}(x)|\nabla^{\gamma}u|^2)dx \left((-\Delta)^m u+\sum_{\gamma=0}^{m-1}(-1)^\gamma \nabla^\gamma\cdot(a_\gamma (x)\nabla^\gamma u)\right) =\frac{f(x,u)}{|x|^\beta}+\epsilon h(x)\ \ \text{in}\ \ \mathbb{R}^{2m}$$ is considered in this paper. We assume that the nonlinearity of the equation has exponential critical growth and prove that, for a positive $\epsilon$ which is small enough, there are two distinct nontrivial solutions to the equation. When $\epsilon=0$, we also prove that the equation has a nontrivial mountain-pass type solution.

[1]  G. Lu,et al.  Existence and multiplicity of solutions to equations of N-Laplacian type with critical exponential growth in RN , 2011 .

[2]  Bernhard Ruf,et al.  Elliptic Equations in R2 with Nonlinearities in the Critical Growth Range , 1995 .

[3]  G. Anello A uniqueness result for a nonlocal equation of Kirchhoff type and some related open problem , 2011 .

[4]  Yueh-Cheng Kuo,et al.  The Nehari manifold for a Kirchhoff type problem involving sign-changing weight functions , 2011 .

[5]  R. Panda On semilinear Neumann problems with critical growth for the n -Laplacian , 1996 .

[6]  Liang Zhao,et al.  Min-max level estimate for a singular quasilinear polyharmonic equation in $\mathbb{R}^{2m}$ , 2012, 1208.2155.

[7]  To Fu Ma,et al.  Positive solutions for a quasilinear elliptic equation of Kirchhoff type , 2005 .

[8]  Patrizia Pucci,et al.  Multiplicity of solutions for p ( x ) -polyharmonic elliptic Kirchhoff equations , 2011 .

[9]  Bitao Cheng,et al.  Existence results of positive solutions of Kirchhoff type problems , 2009 .

[10]  Y. Yang Adams type inequalities and related elliptic partial differential equations in dimension four , 2011, 1105.1528.

[11]  Liang,et al.  A Multiplicity Result for a Singular and Nonhomogeneous Elliptic Problem in R^n , 2012 .

[12]  Adimurthi,et al.  Multiplicity results for semilinear elliptic equations in a bounded domain of $\mathbb {R}^2$ involving critical exponents , 1990 .

[13]  Fuyi Li,et al.  Existence of a positive solution to Kirchhoff type problems without compactness conditions , 2012 .

[14]  Fuyi Li,et al.  Positive solutions to Kirchhoff type equations with nonlinearity having prescribed asymptotic behavior , 2014 .

[15]  Jianqing Chen Multiple positive solutions to a class of Kirchhoff equation on R3 with indefinite nonlinearity , 2014 .

[16]  Y. Yang Existence of positive solutions to quasi-linear elliptic equations with exponential growth in the whole Euclidean space , 2011, 1106.4622.

[17]  F. Gazzola,et al.  Existence and nonexistence results for critical growth biharmonic elliptic equations , 2003 .

[18]  Liang Zhao Exponential problem on a compact Riemannian manifold without boundary , 2012 .

[19]  Guozhen Lu,et al.  Existence and multiplicity of solutions to equations of $N-$Laplacian type with critical exponential growth in $\mathbb{R}^{N}$ , 2011 .

[20]  Sihua Liang,et al.  Existence of solutions for Kirchhoff type problems with critical nonlinearity in RN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begi , 2014, Zeitschrift für angewandte Mathematik und Physik.

[21]  G. Figueiredo,et al.  Existence and Concentration Result for the Kirchhoff Type Equations with General Nonlinearities , 2014 .

[22]  Shang-Jie Chen,et al.  Multiple solutions for the nonhomogeneous Kirchhoff equation on RN , 2013 .

[23]  Liang Zhao,et al.  A class of Adams–Fontana type inequalities and related functionals on manifolds , 2009, Nonlinear Differential Equations and Applications NoDEA.

[24]  Xian Wu,et al.  A new result on high energy solutions for Schrödinger-Kirchhoff type equations in Rn , 2014, Appl. Math. Lett..

[25]  Ó. JoãoMarcosdo,et al.  On a quasilinear nonhomogeneous elliptic equation with critical growth in R N , 2009 .

[26]  D. G. Figueiredo,et al.  Elliptic equations in R2 with nonlinearities in the critical growth range , 1995 .

[27]  Adimurthi,et al.  An Interpolation of Hardy Inequality and Trudinger–Moser Inequality in ℝN and Its Applications , 2009 .

[28]  Daisuke Naimen,et al.  The critical problem of Kirchhoff type elliptic equations in dimension four , 2014 .

[29]  W. Reichel,et al.  Existence of solutions to nonlinear, subcritical higher order elliptic Dirichlet problems , 2009, 0906.2345.

[30]  Xiaoming He,et al.  Existence and concentration behavior of positive solutions for a Kirchhoff equation in R3 , 2012 .

[31]  B. Ruf,et al.  On an inequality by N. Trudinger and J. Moser and related elliptic equations , 2002 .

[32]  Chun-Lei Tang,et al.  Multiple solutions for Kirchhoff-type equations in RN , 2013 .

[33]  Paul H. Rabinowitz,et al.  On a class of nonlinear Schrödinger equations , 1992 .

[34]  Kanishka Perera,et al.  Nontrivial solutions of Kirchhoff-type problems via the Yang index , 2006 .

[35]  H. Fan,et al.  Positive and negative solutions for a class of Kirchhoff type problems on unbounded domain , 2015 .

[36]  D. Cao Nontrivial Solution of Semilinear Elliptic Equations with Critical Exponent in R , 1992 .

[37]  Jacques-Louis Lions,et al.  On Some Questions in Boundary Value Problems of Mathematical Physics , 1978 .

[38]  J. Nieto,et al.  Positive solution for a superlinear Kirchhoff type problem with a parameter , 2014 .

[39]  Zuodong Yang,et al.  Multiple solutions for N-Kirchhoff type problems with critical exponential growth in RN , 2015 .