Folding of 16S rRNA in a signal-producing structure for the detection of bacteria.

Sixty-four DNA strands hybridize to 16S rRNA to form 32 deoxyribozyme catalytic cores that produce a fluorescent signal. The approach allows detection of 0.6 pM 16S rRNA, or about 3×10(4) bacterial cells in a PCR-free format.

[1]  L. Weiss,et al.  Utility of microsporidian rRNA in diagnosis and phylogeny: a review. , 1994, Folia parasitologica.

[2]  F. Allerberger,et al.  Mechanisms behind variation in the Clostridium difficile 16S–23S rRNA intergenic spacer region , 2010, Journal of medical microbiology.

[3]  Barbara Saccà,et al.  DNA origami: the art of folding DNA. , 2012, Angewandte Chemie.

[4]  Dmitry M Kolpashchikov,et al.  A Binary Deoxyribozyme for Nucleic Acid Analysis , 2007, Chembiochem : a European journal of chemical biology.

[5]  A. J. Nijdam,et al.  Nanotechnologies for biomolecular detection and medical diagnostics. , 2006, Current opinion in chemical biology.

[6]  Erik Winfree,et al.  An information-bearing seed for nucleating algorithmic self-assembly , 2009, Proceedings of the National Academy of Sciences.

[7]  Paul E. Young,et al.  MNAzymes, a Versatile New Class of Nucleic Acid Enzymes That Can Function as Biosensors and Molecular Switches , 2009, Journal of the American Chemical Society.

[8]  Joungmok Kim,et al.  Recent advances in rapid and ultrasensitive biosensors for infectious agents: lesson from Bacillus anthracis diagnostic sensors. , 2010, The Analyst.

[9]  P. Rothemund Folding DNA to create nanoscale shapes and patterns , 2006, Nature.

[10]  C. Niemeyer,et al.  DNA‐Origami: die Kunst, DNA zu falten , 2012 .

[11]  Orin C. Shanks,et al.  Evaluation of genetic markers from the 16S rRNA gene V2 region for use in quantitative detection of selected Bacteroidales species and human fecal waste by qPCR. , 2010, Systematic and applied microbiology.

[12]  K. Nagai,et al.  Two genetic clusters in swine hemoplasmas revealed by analyses of the 16S rRNA and RNase P RNA genes. , 2011, The Journal of veterinary medical science.

[13]  K. Schleifer,et al.  Bacterial phylogeny based on 16S and 23S rRNA sequence analysis. , 1994, FEMS microbiology reviews.

[14]  J. T. Staley Universal species concept: pipe dream or a step toward unifying biology? , 2009, Journal of Industrial Microbiology & Biotechnology.

[15]  Dmitry M. Kolpashchikov,et al.  Binary probes for nucleic acid analysis. , 2010, Chemical reviews.

[16]  Yulia V Gerasimova,et al.  RNA‐Cleaving Deoxyribozyme Sensor for Nucleic Acid Analysis: The Limit of Detection , 2010, Chembiochem : a European journal of chemical biology.

[17]  A. Diacon,et al.  Short-Term Storage Does Not Affect the Quantitative Yield of Mycobacterium tuberculosis in Sputum in Early-Bactericidal-Activity Studies , 2013, Journal of Clinical Microbiology.

[18]  Chad A Mirkin,et al.  Nanostructures in biodiagnostics. , 2005, Chemical reviews.

[19]  C. Fuery,et al.  MNAzyme qPCR with superior multiplexing capacity. , 2013, Clinical chemistry.

[20]  S. Santra,et al.  Emerging nanotechnology-based strategies for the identification of microbial pathogenesis. , 2010, Advanced drug delivery reviews.

[21]  S. B. Shinde,et al.  Recent trends in in-vitro nanodiagnostics for detection of pathogens. , 2012, Journal of controlled release : official journal of the Controlled Release Society.