Re-emergence of striatal cholinergic interneurons in movement disorders

Twenty years ago, striatal cholinergic neurons were central figures in models of basal ganglia function. But since then, they have receded in importance. Recent studies are likely to lead to their re-emergence in our thinking. Cholinergic interneurons have been implicated as key players in the induction of synaptic plasticity and motor learning, as well as in motor dysfunction. In Parkinson's disease and dystonia, diminished striatal dopaminergic signalling leads to increased release of acetylcholine by interneurons, distorting network function and inducing structural changes that undoubtedly contribute to the symptoms. By contrast, in Huntington's disease and progressive supranuclear palsy, there is a fall in striatal cholinergic markers. This review gives an overview of these recent experimental and clinical studies, placing them within the context of the pathogenesis of movement disorders.

[1]  J. Bargas,et al.  Cholinergic Modulation of Neostriatal Output: a Functional Antagonism between Different Types of Muscarinic Receptors Materials and Methods , 1999 .

[2]  G. Graveland,et al.  Evidence for degenerative and regenerative changes in neostriatal spiny neurons in Huntington's disease. , 1985, Science.

[3]  Charles J. Wilson,et al.  Cholinergic interneuron characteristics and nicotinic properties in the striatum. , 2002, Journal of neurobiology.

[4]  T. Aosaki,et al.  Dopamine-Dependent Synaptic Plasticity in the Striatal Cholinergic Interneurons , 2001, The Journal of Neuroscience.

[5]  S J Kish,et al.  Biochemical pathophysiology of Parkinson's disease. , 1987, Advances in neurology.

[6]  E. Vaadia,et al.  Neuronal synchronization of tonically active neurons in the striatum of normal and parkinsonian primates. , 1996, Journal of neurophysiology.

[7]  T. Wichmann,et al.  Pathophysiology of Parkinson's Disease: The MPTP Primate Model of the Human Disorder , 2003, Annals of the New York Academy of Sciences.

[8]  Y. Smith,et al.  Thalamic inputs to striatal interneurons in monkeys: synaptic organization and co-localization of calcium binding proteins , 1999, Neuroscience.

[9]  R. Jackisch,et al.  Mice transgenic for exon 1 of Huntington's disease: properties of cholinergic and dopaminergic pre‐synaptic function in the striatum , 2003, Journal of neurochemistry.

[10]  Nicolas Maurice,et al.  D2 Dopamine Receptor-Mediated Modulation of Voltage-Dependent Na+ Channels Reduces Autonomous Activity in Striatal Cholinergic Interneurons , 2004, The Journal of Neuroscience.

[11]  P. Calabresi,et al.  Long-term synaptic depression in the striatum: physiological and pharmacological characterization , 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[12]  G. Bernardi,et al.  Altered responses to dopaminergic D2 receptor activation and N-type calcium currents in striatal cholinergic interneurons in a mouse model of DYT1 dystonia , 2006, Neurobiology of Disease.

[13]  J. Jankovic,et al.  Treatment of dystonia , 2006, The Lancet Neurology.

[14]  L. Butcher,et al.  Cholinergic neurons in the caudate-putamen complex proper are intrinsically organized: A combined evans blue and acetylcholinesterase analysis , 1981, Brain Research Bulletin.

[15]  E. Spokes,et al.  Neurochemical alterations in Huntington's chorea: a study of post-mortem brain tissue. , 1980, Brain : a journal of neurology.

[16]  O. Hikosaka,et al.  Expectation of reward modulates cognitive signals in the basal ganglia , 1998, Nature Neuroscience.

[17]  J. Tepper,et al.  Functional diversity and specificity of neostriatal interneurons , 2004, Current Opinion in Neurobiology.

[18]  S. T. Kitai,et al.  Firing patterns and synaptic potentials of identified giant aspiny interneurons in the rat neostriatum , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[19]  G. Graveland,et al.  The frequency and distribution of medium-sized neurons with indented nuclei in the primate and rodent neostriatum , 1985, Brain Research.

[20]  J. Tepper,et al.  Dual Cholinergic Control of Fast-Spiking Interneurons in the Neostriatum , 2002, The Journal of Neuroscience.

[21]  Gary W Miller,et al.  Mechanism of toxicity of pesticides acting at complex I: relevance to environmental etiologies of Parkinson’s disease , 2007, Journal of neurochemistry.

[22]  P. Calabresi,et al.  Muscarinic IPSPs in rat striatal cholinergic interneurones , 1998, The Journal of physiology.

[23]  P. Shashidharan,et al.  Developments in the molecular biology of DYT1 dystonia , 2003, Movement disorders : official journal of the Movement Disorder Society.

[24]  Yuchun Zhang,et al.  Involvement of Ih in Dopamine Modulation of Tonic Firing in Striatal Cholinergic Interneurons , 2007, The Journal of Neuroscience.

[25]  Charles J. Wilson,et al.  The Mechanism of Intrinsic Amplification of Hyperpolarizations and Spontaneous Bursting in Striatal Cholinergic Interneurons , 2005, Neuron.

[26]  N. Nishiyama,et al.  Autosomal dominant guanosine triphosphate cyclohydrolase I deficiency (Segawa disease) , 2003, Annals of neurology.

[27]  M. Brin,et al.  Anticholinergic therapies in the treatment of Parkinson's disease , 2002 .

[28]  A. D. Smith,et al.  Characterization of cholinergic neurons in the rat neostriatum. A combination of choline acetyltransferase immunocytochemistry, Golgi-impregnation and electron microscopy , 1984, Neuroscience.

[29]  D. Lovinger,et al.  Postsynaptic endocannabinoid release is critical to long-term depression in the striatum , 2002, Nature Neuroscience.

[30]  E. Perry,et al.  Cholinergic systems in progressive supranuclear palsy. , 2004, Brain : a journal of neurology.

[31]  Antonio Pisani,et al.  Acetylcholine-mediated modulation of striatal function , 2000, Trends in Neurosciences.

[32]  Charles J. Wilson,et al.  RGS4-dependent attenuation of M4 autoreceptor function in striatal cholinergic interneurons following dopamine depletion , 2006, Nature Neuroscience.

[33]  S. Cragg,et al.  Nicotine amplifies reward-related dopamine signals in striatum , 2004, Nature Neuroscience.

[34]  H. Pan,et al.  Regulation of glutamate release from primary afferents and interneurons in the spinal cord by muscarinic receptor subtypes. , 2007, Journal of neurophysiology.

[35]  J. Mink,et al.  Recent advances in Tourette syndrome research , 2006, Trends in Neurosciences.

[36]  P. Calabresi,et al.  Post-receptor mechanisms underlying striatal long-term depression , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[37]  A M Graybiel,et al.  The basal ganglia and adaptive motor control. , 1994, Science.

[38]  J. Penney,et al.  The functional anatomy of basal ganglia disorders , 1989, Trends in Neurosciences.

[39]  J. Rajkowski,et al.  Tonically discharging putamen neurons exhibit set-dependent responses. , 1984, Proceedings of the National Academy of Sciences of the United States of America.

[40]  R. Albin,et al.  Cholinergic vesicular transporters in progressive supranuclear palsy , 2002, Neurology.

[41]  R. Roos,et al.  Cholinergic neuronal defect without cell loss in Huntington's disease. , 2006, Human molecular genetics.

[42]  Charles J. Wilson,et al.  Spontaneous Activity of Neostriatal Cholinergic Interneurons In Vitro , 1999, The Journal of Neuroscience.

[43]  J. Bolam,et al.  Cholinergic synaptic input to different parts of spiny striatonigral neurons in the rat , 1988, The Journal of comparative neurology.

[44]  P. Calabresi,et al.  Activation of D2-Like Dopamine Receptors Reduces Synaptic Inputs to Striatal Cholinergic Interneurons , 2000, The Journal of Neuroscience.

[45]  A. Singleton,et al.  Genetics of Parkinson's disease and parkinsonism , 2006, Annals of neurology.

[46]  P. Calabresi,et al.  Coordinate high-frequency pattern of stimulation and calcium levels control the induction of LTP in striatal cholinergic interneurons. , 2004, Learning & memory.

[47]  E. Abercrombie,et al.  Spontaneous release of acetylcholine in striatum is preferentially regulated by inhibitory dopamine D2 receptors. , 1996, European journal of pharmacology.

[48]  Y. Kawaguchi,et al.  Dopamine D1-Like Receptor Activation Excites Rat Striatal Large Aspiny Neurons In Vitro , 1998, The Journal of Neuroscience.

[49]  A. Graybiel,et al.  Effect of the nigrostriatal dopamine system on acquired neural responses in the striatum of behaving monkeys. , 1994, Science.

[50]  J. Wess,et al.  Characterization of Central Inhibitory Muscarinic Autoreceptors by the Use of Muscarinic Acetylcholine Receptor Knock-Out Mice , 2002, The Journal of Neuroscience.

[51]  D. Surmeier,et al.  RGS9-2 modulates D2 dopamine receptor-mediated Ca2+ channel inhibition in rat striatal cholinergic interneurons. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[52]  S. Augood,et al.  TorsinA protein and neuropathology in early onset generalized dystonia with GAG deletion , 2003, Neurobiology of Disease.

[53]  G. Bernardi,et al.  Endogenous Serotonin Excites Striatal Cholinergic Interneurons via the Activation of 5-HT 2C, 5-HT6, and 5-HT7 Serotonin Receptors: Implications for Extrapyramidal Side Effects of Serotonin Reuptake Inhibitors , 2007, Neuropsychopharmacology.

[54]  D. Surmeier,et al.  Muscarinic (m2/m4) receptors reduce N- and P-type Ca2+ currents in rat neostriatal cholinergic interneurons through a fast, membrane- delimited, G-protein pathway , 1996, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[55]  J. Surmeier,et al.  D2 dopamine receptors reduce N-type Ca2+ currents in rat neostriatal cholinergic interneurons through a membrane-delimited, protein-kinase-C-insensitive pathway. , 1997, Journal of neurophysiology.

[56]  A. Weindl,et al.  D2 receptor binding in dopa‐responsive dystonia , 1998, Annals of neurology.

[57]  D. Lovinger,et al.  Short- and long-term synaptic depression in rat neostriatum. , 1993, Journal of neurophysiology.

[58]  D. Surmeier,et al.  Muscarinic receptors modulate N-, P-, and L-type Ca2+ currents in rat striatal neurons through parallel pathways , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[59]  M. Kimura Behaviorally contingent property of movement-related activity of the primate putamen. , 1990, Journal of neurophysiology.

[60]  S. Augood,et al.  Dopamine transmission in DYT1 dystonia. , 2004, Advances in neurology.

[61]  R. Duvoisin Cholinergic-anticholinergic antagonism in parkinsonism. , 1967, Archives of neurology.

[62]  Paul Apicella,et al.  Leading tonically active neurons of the striatum from reward detection to context recognition , 2007, Trends in Neurosciences.

[63]  C. Comella,et al.  Treatment of Dystonia , 2003, Clinical neuropharmacology.

[64]  L. Descarries,et al.  Fine structural features of the acetylcholine innervation in the developing neostriatum of rat , 2003, The Journal of comparative neurology.

[65]  W. Schultz,et al.  Tonically discharging neurons of monkey striatum respond to preparatory and rewarding stimuli , 2004, Experimental Brain Research.

[66]  D. Surmeier,et al.  D5 Dopamine Receptors Enhance Zn2+-Sensitive GABAA Currents in Striatal Cholinergic Interneurons through a PKA/PP1 Cascade , 1997, Neuron.

[67]  Manish S. Shah,et al.  A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington's disease chromosomes , 1993, Cell.

[68]  Charles J. Wilson,et al.  Striatal interneurones: chemical, physiological and morphological characterization , 1995, Trends in Neurosciences.

[69]  E. Vaadia,et al.  Coincident but Distinct Messages of Midbrain Dopamine and Striatal Tonically Active Neurons , 2004, Neuron.

[70]  I. Litvan,et al.  Clinical and Genetic Aspects of Progressive Supranuclear Palsy , 1998, Journal of geriatric psychiatry and neurology.

[71]  J. Jankovic,et al.  Parkinson's Disease & Movement Disorders , 2002 .

[72]  R. Albin,et al.  Vesicular neurotransmitter transporters in Huntington's disease: Initial observations and comparison with traditional synaptic markers , 2001, Synapse.

[73]  J. Obeso,et al.  Pathophysiology of the basal ganglia in Parkinson's disease , 2000, Trends in Neurosciences.

[74]  M. Zigmond,et al.  Dopaminergic inhibition of striatal acetylcholine release after 6-hydroxydopamine. , 1989, European journal of pharmacology.

[75]  Larry L. Butcher,et al.  Cholinergic systems in the rat brain: III. Projections from the pontomesencephalic tegmentum to the thalamus, tectum, basal ganglia, and basal forebrain , 1986, Brain Research Bulletin.

[76]  P. Calabresi,et al.  Dopaminergic control of synaptic plasticity in the dorsal striatum , 2001, The European journal of neuroscience.

[77]  A. Graybiel,et al.  Neurons in the thalamic CM-Pf complex supply striatal neurons with information about behaviorally significant sensory events. , 2001, Journal of neurophysiology.

[78]  S. T. Kitai,et al.  A Golgi study of rat neostriatal neurons: Light microscopic analysis , 1982, The Journal of comparative neurology.

[79]  Henry H. Yin,et al.  Dopaminergic Control of Corticostriatal Long-Term Synaptic Depression in Medium Spiny Neurons Is Mediated by Cholinergic Interneurons , 2006, Neuron.