Scaling relations in two-dimensional relativistic hydrodynamic turbulence

[1]  Stephen R. Green,et al.  Coupled Oscillator Model for Nonlinear Gravitational Perturbations , 2015, 1502.08051.

[2]  C. Eling,et al.  The anomalous scaling exponents of turbulence in general dimension from random geometry , 2015, 1502.03069.

[3]  A. Zimmerman,et al.  Turbulent black holes. , 2014, Physical review letters.

[4]  E. Quataert,et al.  ACCELERATION OF RELATIVISTIC ELECTRONS BY MAGNETOHYDRODYNAMIC TURBULENCE: IMPLICATIONS FOR NON-THERMAL EMISSION FROM BLACK HOLE ACCRETION DISKS , 2014, 1403.3123.

[5]  P. Chesler,et al.  Holographic turbulence. , 2013, Physical review letters.

[6]  Stephen R. Green,et al.  A Holographic Path to the Turbulent Side of Gravity , 2013, 1309.7940.

[7]  C. Eling,et al.  Holographic vorticity in the fluid/gravity correspondence , 2013, 1308.1651.

[8]  Oscar A. Reula,et al.  Turbulent flows for relativistic conformal fluids in 2+1 dimensions , 2012, 1210.6702.

[9]  L. Rezzolla,et al.  UNIVERSALITY AND INTERMITTENCY IN RELATIVISTIC TURBULENT FLOWS OF A HOT PLASMA , 2012, 1210.7081.

[10]  G. Falkovich,et al.  Turbulence in fluid layers , 2011 .

[11]  Y. Oz,et al.  Shocks and universal statistics in (1+1)-dimensional relativistic turbulence , 2010, 1006.0494.

[12]  S. Musacchio,et al.  Evidence for the double cascade scenario in two-dimensional turbulence. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[13]  O. Coté,et al.  Velocity and Temperature Structure Functions in the Upper Troposphere and Lower Stratosphere from High-Resolution Aircraft Measurements , 2010 .

[14]  Y. Oz,et al.  Exact scaling relations in relativistic hydrodynamic turbulence , 2009, 0909.3574.

[15]  G. Falkovich,et al.  New relations for correlation functions in Navier–Stokes turbulence , 2009, Journal of Fluid Mechanics.

[16]  M. Raamsdonk Black hole dynamics from atmospheric science , 2008, 0802.3224.

[17]  M. Stephanov,et al.  Relativistic viscous hydrodynamics, conformal invariance, and holography , 2007, 0712.2451.

[18]  V. Hubeny,et al.  Nonlinear fluid dynamics from gravity , 2007, 0712.2456.

[19]  D. Lamb,et al.  Intermittency and universality in fully developed inviscid and weakly compressible turbulent flows. , 2007, Physical review letters.

[20]  M. Norman,et al.  The Statistics of Supersonic Isothermal Turbulence , 2007, 0704.3851.

[21]  C. Connaughton,et al.  Dynamics of energy condensation in two-dimensional turbulence. , 2006, Physical review letters.

[22]  K. Cannon Collapse-time distribution for large cosmic structures , 2004 .

[23]  P. Woodward,et al.  Measures of intermittency in driven supersonic flows. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[24]  L. Lehner,et al.  Constraint-preserving boundary conditions in numerical relativity , 2001, gr-qc/0111003.

[25]  Stanislav Boldyrev,et al.  Two-dimensional turbulence , 1980 .

[26]  M. Vergassola,et al.  Inverse energy cascade in two-dimensional turbulence: deviations from gaussian behavior , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[27]  R. Ecke,et al.  Soap film flows: Statistics of two-dimensional turbulence , 1999 .

[28]  D. Bernard Three-point velocity correlation functions in two-dimensional forced turbulence. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[29]  M. Rutgers,et al.  Forced 2D Turbulence: Experimental Evidence of Simultaneous Inverse Energy and Forward Enstrophy Cascades , 1998 .

[30]  H. Kreiss,et al.  Time-Dependent Problems and Difference Methods , 1996 .

[31]  Roberto Benzi,et al.  On the scaling of three-dimensional homogeneous and isotropic turbulence , 1995 .

[32]  Succi,et al.  Extended self-similarity in turbulent flows. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[33]  Honeycutt,et al.  Stochastic Runge-Kutta algorithms. I. White noise. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[34]  A. Kolmogorov,et al.  The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers , 1991, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[35]  G. D. Nastrom,et al.  On the spectrum of atmospheric velocity fluctuations seen by MST/ST radar and their interpretation , 1985 .

[36]  T. Tatsumi Theory of Homogeneous Turbulence , 1980 .

[37]  F. Champagne The fine-scale structure of the turbulent velocity field , 1978, Journal of Fluid Mechanics.

[38]  R. Kraichnan Inertial Ranges in Two‐Dimensional Turbulence , 1967 .

[39]  Evgenii A. Novikov,et al.  Functionals and the random-force method in turbulence theory , 1965 .

[40]  Geoffrey Ingram Taylor,et al.  The Statistical Theory of Isotropic Turbulence , 1937 .

[41]  O. Reynolds III. An experimental investigation of the circumstances which determine whether the motion of water shall be direct or sinuous, and of the law of resistance in parallel channels , 1883, Proceedings of the Royal Society of London.