Partial linear single index models with distortion measurement errors

We study partial linear single index models when the response and the covariates in the parametric part are measured with errors and distorted by unknown functions of commonly observable confounding variables, and propose a semiparametric covariate-adjusted estimation procedure. We apply the minimum average variance estimation method to estimate the parameters of interest. This is different from all existing covariate-adjusted methods in the literature. Asymptotic properties of the proposed estimators are established. Moreover, we also study variable selection by adopting the coordinate-independent sparse estimation to select all relevant but distorted covariates in the parametric part. We show that the resulting sparse estimators can exclude all irrelevant covariates with probability approaching one. A simulation study is conducted to evaluate the performance of the proposed methods and a real data set is analyzed for illustration.

[1]  G. Schwarz Estimating the Dimension of a Model , 1978 .

[2]  L. Breiman Heuristics of instability and stabilization in model selection , 1996 .

[3]  Damla Şentürk,et al.  Inference for covariate adjusted regression via varying coefficient models , 2006 .

[4]  H. Ichimura,et al.  SEMIPARAMETRIC LEAST SQUARES (SLS) AND WEIGHTED SLS ESTIMATION OF SINGLE-INDEX MODELS , 1993 .

[5]  D. Ruppert,et al.  Penalized Spline Estimation for Partially Linear Single-Index Models , 2002 .

[6]  Lixing Zhu,et al.  Covariate-adjusted nonlinear regression , 2009, 0908.1849.

[7]  Jianqing Fan,et al.  Statistical Estimation in Varying-Coefficient Models , 1999 .

[8]  D. Hall Measurement Error in Nonlinear Models: A Modern Perspective , 2008 .

[9]  Runze Li,et al.  Variable Selection in Semiparametric Regression Modeling. , 2008, Annals of statistics.

[10]  Tosio Kato Perturbation theory for linear operators , 1966 .

[11]  R. Cook,et al.  Coordinate-independent sparse sufficient dimension reduction and variable selection , 2010, 1211.3215.

[12]  Lexin Li,et al.  Sparse sufficient dimension reduction , 2007 .

[13]  Damla Şentürk,et al.  Covariate-adjusted regression , 2005 .

[14]  C. H. Oh,et al.  Some comments on , 1998 .

[15]  C. Mallows More comments on C p , 1995 .

[16]  C. Mallows Some Comments on Cp , 2000, Technometrics.

[17]  George A Kaysen,et al.  Relationships among inflammation nutrition and physiologic mechanisms establishing albumin levels in hemodialysis patients. , 2002, Kidney international.

[18]  David Ruppert,et al.  Additive Partial Linear Models with Measurement Errors. , 2008, Biometrika.

[19]  G. Wahba Partial and interaction spline models for the semiparametric estimation of functions of several variables , 1986 .

[20]  R. Tibshirani Regression Shrinkage and Selection via the Lasso , 1996 .

[21]  Jianqing Fan,et al.  Local polynomial modelling and its applications , 1994 .

[22]  W. Härdle,et al.  Direct Semiparametric Estimation of Single-Index Models with Discrete Covariates dpsfb950075.ps.tar = Enno MAMMEN J.S. MARRON: Mass Recentered Kernel Smoothers , 1996 .

[23]  R. Serfling Approximation Theorems of Mathematical Statistics , 1980 .

[24]  H. Tong,et al.  Article: 2 , 2002, European Financial Services Law.

[25]  W. Härdle,et al.  Optimal Smoothing in Single-index Models , 1993 .

[26]  R. Tibshirani,et al.  Varying‐Coefficient Models , 1993 .

[27]  W. Härdle Nonparametric and Semiparametric Models , 2004 .

[28]  Runze Li,et al.  Variable Selection for Partially Linear Models With Measurement Errors , 2009, Journal of the American Statistical Association.

[29]  W. Härdle,et al.  Semi-parametric estimation of partially linear single-index models , 2006 .

[30]  Jianqing Fan,et al.  Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties , 2001 .

[31]  Jane-ling Wang,et al.  Estimation for a partial-linear single-index model , 2009, 0905.2042.

[32]  Damla Şentürk,et al.  Covariate-adjusted generalized linear models , 2009 .

[33]  Hua Liang,et al.  ESTIMATION AND VARIABLE SELECTION FOR GENERALIZED ADDITIVE PARTIAL LINEAR MODELS. , 2011, Annals of statistics.

[34]  J. Horowitz Semiparametric and Nonparametric Methods in Econometrics , 2007 .

[35]  Jun Zhang,et al.  On a dimension reduction regression with covariate adjustment , 2012, J. Multivar. Anal..

[36]  加藤 敏夫,et al.  Perturbation theory for linear operators , 1984 .

[37]  Nancy E. Heckman,et al.  Spline Smoothing in a Partly Linear Model , 1986 .

[38]  C. L. Mallows Some comments on C_p , 1973 .

[39]  Jianqing Fan,et al.  Generalized Partially Linear Single-Index Models , 1997 .

[40]  H. Akaike Maximum likelihood identification of Gaussian autoregressive moving average models , 1973 .

[41]  B. Silverman,et al.  Weak and strong uniform consistency of kernel regression estimates , 1982 .

[42]  W. Stute,et al.  Nonparametric checks for single-index models , 2005, math/0507416.

[43]  P. Speckman Kernel smoothing in partial linear models , 1988 .

[44]  Runze Li,et al.  ESTIMATION AND TESTING FOR PARTIALLY LINEAR SINGLE-INDEX MODELS. , 2010, Annals of statistics.

[45]  Wolfgang Härdle,et al.  Partially Linear Models , 2000 .

[46]  Hung Chen,et al.  Convergence Rates for Parametric Components in a Partly Linear Model , 1988 .