On the solution of a Riesz space-fractional nonlinear wave equation through an efficient and energy-invariant scheme

ABSTRACT In this work, we consider a damped hyperbolic partial differential equation in multiple spatial dimensions with spatial partial derivatives of non-integer order. The equation under investigation is a fractional extension of the well-known sine-Gordon and Klein–Gordon equations from relativistic quantum mechanics. The system has associated an energy functional which is conserved in the undamped regime, and dissipated in the damped case. In this manuscript, we restrict our study to a bounded spatial domain and propose an explicit finite-difference discretization of the problem using fractional centred differences. Together with the scheme, we propose an approximation for the energy functional and show that the energy of the discrete system is conserved/dissipated when the energy of the continuous model is conserved/dissipated. The method guarantees that the energy functionals are positive, in agreement with the continuous counterparts. We show in this work that the method is a uniquely solvable, consistent, stable and convergent technique.

[1]  Dimitri D. Vvedensky Partial differential equations - with Mathematica , 1993, Physics series.

[2]  Arturo de Pablo,et al.  A General Fractional Porous Medium Equation , 2011, 1104.0306.

[3]  Daisuke Furihata,et al.  Finite-difference schemes for nonlinear wave equation that inherit energy conservation property , 2001 .

[4]  X. Liang,et al.  A fourth-order implicit-explicit scheme for the space fractional nonlinear Schrödinger equations , 2017, Numerical Algorithms.

[5]  S. Tomasiello,et al.  Note on a Picard-like Method for Caputo Fuzzy Fractional Differential Equations , 2017 .

[6]  S. Ray Soliton Solutions of Nonlinear and Nonlocal Sine-Gordon Equation Involving Riesz Space Fractional Derivative , 2015 .

[7]  A. Biswas,et al.  New exact solutions for the sine-Gordon equation in 2+1 dimensions , 2012 .

[8]  Saeed Kazem,et al.  On a numerical investigation of the time fractional Fokker– Planck equation via local discontinuous Galerkin method , 2017, Int. J. Comput. Math..

[9]  Shahrokh Esmaeili,et al.  A pseudo-spectral scheme for the approximate solution of a time-fractional diffusion equation , 2015, Int. J. Comput. Math..

[10]  Mustafa Gülsu,et al.  Numerical solution the fractional Bagley–Torvik equation arising in fluid mechanics , 2017, Int. J. Comput. Math..

[11]  X. Liang,et al.  The locally extrapolated exponential splitting scheme for multi-dimensional nonlinear space-fractional Schrödinger equations , 2017, Numerical Algorithms.

[12]  V. E. Tarasov Continuous limit of discrete systems with long-range interaction , 2006, 0711.0826.

[13]  Jorge Eduardo Macías-Díaz,et al.  A structure-preserving method for a class of nonlinear dissipative wave equations with Riesz space-fractional derivatives , 2017, J. Comput. Phys..

[14]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[15]  Jorge Eduardo Macías-Díaz,et al.  A compact fourth-order in space energy-preserving method for Riesz space-fractional nonlinear wave equations , 2018, Appl. Math. Comput..

[16]  J. Awrejcewicz,et al.  DIFFERENTIAL QUADRATURE-BASED SIMULATION OF A CLASS OF FUZZY DAMPED FRACTIONAL DYNAMICAL SYSTEMS , 2017 .

[17]  Delfim F. M. Torres,et al.  Fractional conservation laws in optimal control theory , 2007, 0711.0609.

[18]  Vasily E. Tarasov,et al.  Coupled oscillators with power-law interaction and their fractional dynamics analogues , 2007 .

[19]  S. Ray A new analytical modelling for nonlocal generalized Riesz fractional sine-Gordon equation , 2016 .

[20]  D. Furihata,et al.  Dissipative or Conservative Finite Difference Schemes for Complex-Valued Nonlinear Partial Different , 2001 .

[21]  Abdul-Qayyum M. Khaliq,et al.  Trapezoidal scheme for time-space fractional diffusion equation with Riesz derivative , 2017, J. Comput. Phys..

[22]  Jorge E. Macías-Díaz,et al.  Persistence of nonlinear hysteresis in fractional models of Josephson transmission lines , 2017, Commun. Nonlinear Sci. Numer. Simul..

[23]  V. E. Tarasov Fractional generalization of gradient and hamiltonian systems , 2005, math/0602208.

[24]  Vasily E. Tarasov,et al.  Partial fractional derivatives of Riesz type and nonlinear fractional differential equations , 2016 .

[25]  Siu-Long Lei,et al.  Finite difference schemes for two-dimensional time-space fractional differential equations , 2016, Int. J. Comput. Math..

[26]  A. K. Gupta,et al.  A novel attempt for finding comparatively accurate solution for sine-Gordon equation comprising Riesz space fractional derivative , 2016 .

[27]  N. Laskin Fractional Schrödinger equation. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[28]  Fawang Liu,et al.  Novel Second-Order Accurate Implicit Numerical Methods for the Riesz Space Distributed-Order Advection-Dispersion Equations , 2015 .

[29]  Juan Luis Vázquez,et al.  The Fisher-KPP Equation with Nonlinear Fractional Diffusion , 2013, SIAM J. Math. Anal..

[30]  Z. Fei,et al.  Two energy conserving numerical schemes for the Sine-Gordon equation , 1991 .

[31]  Juan Luis Vázquez,et al.  A Priori Estimates for Fractional Nonlinear Degenerate Diffusion Equations on Bounded Domains , 2013, 1311.6997.

[32]  T. H. Gronwall Note on the Derivatives with Respect to a Parameter of the Solutions of a System of Differential Equations , 1919 .

[33]  Jorge E. Macías-Díaz,et al.  An explicit dissipation-preserving method for Riesz space-fractional nonlinear wave equations in multiple dimensions , 2018, Commun. Nonlinear Sci. Numer. Simul..

[34]  R. Winther,et al.  Numerical methods for incompressible viscous flow , 2002 .

[35]  Abdul-Qayyum M. Khaliq,et al.  Fourth-order methods for space fractional reaction–diffusion equations with non-smooth data , 2018, Int. J. Comput. Math..

[36]  L. Vázquez,et al.  Numerical solution of the sine-Gordon equation , 1986 .

[37]  D. Furihata,et al.  Discrete Variational Derivative Method: A Structure-Preserving Numerical Method for Partial Differential Equations , 2010 .

[38]  Georgios Akrivis,et al.  Finite difference discretization of the cubic Schrödinger equation , 1993 .

[39]  Vasily E. Tarasov,et al.  Conservation laws and Hamilton’s equations for systems with long-range interaction and memory , 2008 .

[40]  Jorge Eduardo Macías-Díaz,et al.  A pseudo energy-invariant method for relativistic wave equations with Riesz space-fractional derivatives , 2017, Comput. Phys. Commun..

[41]  Jalil Rashidinia,et al.  Numerical solution of the nonlinear Klein-Gordon equation , 2010, J. Comput. Appl. Math..

[42]  A. Friedman Foundations of modern analysis , 1970 .

[43]  Changpin Li,et al.  A novel compact ADI scheme for the time-fractional subdiffusion equation in two space dimensions , 2016, Int. J. Comput. Math..

[44]  Jorge E. Macías-Díaz,et al.  Numerical simulation of the nonlinear dynamics of harmonically driven Riesz-fractional extensions of the Fermi-Pasta-Ulam chains , 2018, Commun. Nonlinear Sci. Numer. Simul..