Temperatures in ambient mantle and plumes: Constraints from basalts, picrites, and komatiites

Several methods have been developed to assess the thermal state of the mantle below oceanic ridges, islands, and plateaus, on the basis of the petrology and geochemistry of erupted lavas. One leads to the conclusion that mantle potential temperature (i.e., TP) of ambient mantle below oceanic ridges is 1430°C, the same as Hawaii. Another has ridges with a large range in ambient mantle potential temperature (i.e., TP = 1300–1570°C), comparable in some cases to hot spots (Klein and Langmuir, 1987; Langmuir et al., 1992). A third has uniformly low temperatures for ambient mantle below ridges, ∼1300°C, with localized 250°C anomalies associated with mantle plumes. All methods involve assumptions and uncertainties that we critically evaluate. A new evaluation is made of parental magma compositions that would crystallize olivines with the maximum forsterite contents observed in lava flows. These are generally in good agreement with primary magma compositions calculated using the mass balance method of Herzberg and O'Hara (2002), and differences reflect the well‐known effects of fractional crystallization. Results of primary magma compositions we obtain for mid‐ocean ridge basalts and various oceanic islands and plateaus generally favor the third type of model but with ambient mantle potential temperatures in the range 1280–1400°C and thermal anomalies that can be 200–300°C above this background. Our results are consistent with the plume model.

[1]  M. Perfit,et al.  Ambient and excess mantle temperatures, olivine thermometry, and active vs. passive upwelling , 2007 .

[2]  C. Herzberg Petrology and thermal structure of the Hawaiian plume from Mauna Kea volcano , 2006, Nature.

[3]  Hans-Peter Bunge,et al.  Are splash plumes the origin of minor hotspots , 2006 .

[4]  A. Saunders Large Igneous Provinces: Origin and Environmental Consequences , 2005 .

[5]  Hans-Peter Bunge,et al.  Low plume excess temperature and high core heat flux inferred from non-adiabatic geotherms in internally heated mantle circulation models , 2005 .

[6]  H. Dick,et al.  Dating the Growth of Oceanic Crust at a Slow-Spreading Ridge , 2005, Science.

[7]  P. V. Keken,et al.  Multiple volcanic episodes of flood basalts caused by thermochemical mantle plumes , 2005, Nature.

[8]  J. M. Rhodes,et al.  Ferric/ferrous ratios in 1984 Mauna Loa lavas: a contribution to understanding the oxidation state of Hawaiian magmas , 2005 .

[9]  K. Priestley,et al.  Thermal structure of oceanic and continental lithosphere , 2005 .

[10]  K. Putirka Mantle potential temperatures at Hawaii, Iceland, and the mid‐ocean ridge system, as inferred from olivine phenocrysts: Evidence for thermally driven mantle plumes , 2005 .

[11]  H. Samuel,et al.  Beyond the thermal plume paradigm , 2005 .

[12]  A. Sobolev,et al.  An olivine-free mantle source of Hawaiian shield basalts , 2005, Nature.

[13]  M. Toplis The thermodynamics of iron and magnesium partitioning between olivine and liquid: criteria for assessing and predicting equilibrium in natural and experimental systems , 2005 .

[14]  S. Hart,et al.  Major and trace element composition of the depleted MORB mantle (DMM) , 2005 .

[15]  C. Herzberg Geodynamic Information in Peridotite Petrology , 2004 .

[16]  C. Herzberg Partial Crystallization of Mid-Ocean Ridge Basalts in the Crust and Mantle , 2004 .

[17]  M. Hirschmann,et al.  High-pressure Partial Melting of Mafic Lithologies in the Mantle , 2004 .

[18]  G. Schubert,et al.  Superplumes or plume clusters , 2004 .

[19]  E. Engdahl,et al.  Finite-Frequency Tomography Reveals a Variety of Plumes in the Mantle , 2004, Science.

[20]  B. Murton,et al.  Mantle components in Iceland and adjacent ridges investigated using double-spike Pb isotope ratios , 2004 .

[21]  C. Langmuir,et al.  A hydrous melting and fractionation model for mid‐ocean ridge basalts: Application to the Mid‐Atlantic Ridge near the Azores , 2004 .

[22]  P. Wallace,et al.  Volatiles in submarine basaltic glasses from the Ontong Java Plateau (ODP Leg 192): implications for magmatic processes and source region compositions , 2002, Geological Society, London, Special Publications.

[23]  T. Sano,et al.  Experimental petrology of basement lavas from Ocean Drilling Program Leg 192: implications for differentiation processes in Ontong Java Plateau magmas , 2004, Geological Society, London, Special Publications.

[24]  M. Godard,et al.  Origin and evolution of magmas on the Ontong Java Plateau , 2004, Geological Society, London, Special Publications.

[25]  C. Herzberg Partial melting below the Ontong Java Plateau , 2004, Geological Society, London, Special Publications.

[26]  D. Weis,et al.  Pin-pricking the elephant: evidence on the origin of the Ontong Java Plateau from Pb-Sr-Hf-Nd isotopic characteristics of ODP Leg 192 basalts , 2004, Geological Society, London, Special Publications.

[27]  J. Mahoney,et al.  Origin and evolution of the Ontong Java Plateau: introduction , 2004, Geological Society, London, Special Publications.

[28]  G. Schuberta,et al.  Superplumes or plume clusters ? , 2004 .

[29]  S. Karato Mapping water content in the upper mantle , 2013 .

[30]  M. Hirschmann,et al.  Anhydrous partial melting experiments on MORB-like eclogite: Phase relations, phase compositions and mineral-melt partitioning of major elements at 2-3 GPa , 2003 .

[31]  F. Hauff,et al.  Geodynamic evolution of the Galápagos hot spot system (Central East Pacific) over the past 20 m.y.: Constraints from morphology, geochemistry, and magnetic anomalies , 2003 .

[32]  K. Grönvold,et al.  Melt mixing and crystallization under Theistareykir, northeast Iceland , 2003 .

[33]  G. Foulger,et al.  Is "Hotspot" Volcanism a Consequence of Plate Tectonics? , 2003, Science.

[34]  B. Hardarson,et al.  Does depleted mantle form an intrinsic part of the Iceland plume? , 2003 .

[35]  G. Byerly,et al.  Petrology and Geochemistry of 3.3 Ga Komatiites -- Weltevreden Formation, Barberton Greenstone Belt , 2003 .

[36]  C. H. Langmuir,et al.  The importance of water to oceanic mantle melting regimes , 2003, Nature.

[37]  P. Asimow A Skirmishing Against our Adversaries, the Rocks: The Significance of Multiple Saturation Points in the Context of Polybaric Near-fractional Melting , 2004 .

[38]  C. Langmuir,et al.  Recycled dehydrated lithosphere observed in plume-influenced mid-ocean-ridge basalt , 2002, Nature.

[39]  C. Herzberg,et al.  Plume-Associated Ultramafic Magmas of Phanerozoic Age , 2002 .

[40]  Á. Höskuldsson,et al.  Is the Iceland hot spot also wet? Evidence from the water contents of undegassed submarine and subglacial pillow basalts , 2002 .

[41]  P. Thurston,et al.  Spatial and temporal variations in the geochemistry of komatiites and komatiitic basalts in the Abitibi greenstone belt , 2002 .

[42]  D. Clague,et al.  The Line Islands revisited: New 40Ar/39Ar geochronologic evidence for episodes of volcanism due to lithospheric extension , 2002 .

[43]  K. Breddam Kistufell: Primitive Melt from the Iceland Mantle Plume , 2002 .

[44]  Ian H. Campbe Implications of mantle plume structure for the evolution of flood basalts , 2002 .

[45]  Lamont-Doherty Earth Consequences of melt transport for uranium series disequilibrium in young lavas , 2002 .

[46]  K. Grönvold,et al.  Plume-driven upwelling under central Iceland , 2001 .

[47]  M. Walter,et al.  Generation of mid-ocean ridge basalts at pressures from 1 to 7 GPa , 2001 .

[48]  L. Danyushevsky The effect of small amounts of H2O on crystallisation of mid-ocean ridge and backarc basin magmas , 2001 .

[49]  P. Robinson,et al.  Whole-rock geochemistry of gabbros from the Southwest Indian Ridge: constraints on geochemical fractionations between the upper and lower oceanic crust and magma chamber processes at (very) slow-spreading ridges , 2001 .

[50]  Guust Nolet,et al.  Seismic tomography shows that upwelling beneath Iceland is confined to the upper mantle , 2001 .

[51]  S. Eggins,et al.  Primary magmas and mantle temperatures , 2001 .

[52]  P. Asimow,et al.  Calculation of Peridotite Partial Melting from Thermodynamic Models of Minerals and Melts, IV. Adiabatic Decompression and the Composition and Mean Properties of Mid-ocean Ridge Basalts , 2001 .

[53]  D. Clague,et al.  Volatiles in Basaltic Glasses from Loihi Seamount, Hawaii: Evidence for a Relatively Dry Plume Component , 2001 .

[54]  K. Grönvold,et al.  Melt Generation and Movement beneath Theistareykir, NE Iceland , 2001 .

[55]  P. Michael Implications for magmatic processes at Ontong Java Plateau from volatile and major element contents of Cretaceous basalt glasses , 2000 .

[56]  Don L. Anderson,et al.  The thermal state of the upper mantle; No role for mantle plumes , 2000 .

[57]  S. Eggins,et al.  H2O Abundance in Depleted to Moderately Enriched Mid-ocean Ridge Magmas; Part I: Incompatible Behaviour, Implications for Mantle Storage, and Origin of Regional Variations , 2000 .

[58]  N. Arndt,et al.  Geochemical Study of Ultramafic Volcanic and Plutonic Rocks from Gorgona Island, Colombia: the Plumbing System of an Oceanic Plateau , 2000 .

[59]  L. Larsen,et al.  Processes in High-Mg, High-T Magmas: Evidence from Olivine, Chromite and Glass in Palaeogene Picrites from West Greenland , 2000 .

[60]  L. Danyushevsky,et al.  Melting of Refractory Mantle at 1·5, 2 and 2·5 GPa under Anhydrous and H2O-undersaturated Conditions: Implications for the Petrogenesis of High-Ca Boninites and the Influence of Subduction Components on Mantle Melting , 2000 .

[61]  D. McKenzie Constraints on melt generation and transport from U-series activity ratios , 2000 .

[62]  A. Kerr,et al.  Petrogenesis of picrites from the Caribbean Plateau and the North Atlantic magmatic province , 1999 .

[63]  M. Norman,et al.  Primitive magmas and source characteristics of the Hawaiian plume: petrology and geochemistry of shield picrites , 1999 .

[64]  W. J. Morgan,et al.  The thin hot plume beneath Iceland , 1999 .

[65]  P. Asimow,et al.  Steady-state Mantle-Melt Interactions in One Dimension: I. Equilibrium Transport and Melt Focusing , 1999 .

[66]  A. D. Saunders,et al.  The Iceland plume in space and time: a Sr-Nd-Pb-Hf study of the North Atlantic rifted margin , 2000 .

[67]  S. Hart,et al.  Silica enrichment in the continental upper mantle via melt/rock reaction , 1998 .

[68]  F. Albarède,et al.  Were komatiites wet , 1998 .

[69]  H. G. David,et al.  Reactions between eclogite and peridotite; mantle refertilisation by subduction of oceanic crust , 1998 .

[70]  C. Agee CRYSTAL-LIQUID DENSITY INVERSIONS IN TERRESTRIAL AND LUNAR MAGMAS , 1998 .

[71]  M. Walter Melting of Garnet Peridotite and the Origin of Komatiite and Depleted Lithosphere , 1998 .

[72]  A. Kerr,et al.  The north Atlantic igneous province , 2013 .

[73]  H. Pollack Thermal characteristics of the Archaean , 1997 .

[74]  Y. Niu Mantle melting and melt extraction processes beneath ocean ridges : evidence from abyssal peridotites , 1997 .

[75]  D. Clague,et al.  Volatiles in Alkalic Basalts form the North Arch Volcanic Field, Hawaii: Extensive Degassing of Deep Submarine-erupted Alkalic Series Lavas , 1997 .

[76]  P. Kelemen,et al.  A review of melt migration processes in the adiabatically upwelling mantle beneath oceanic spreading ridges , 1997, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[77]  F. Albarède,et al.  The Geochemical Regimes of Piton de la Fournaise Volcano (Reunion) During the Last 530 000 Years , 1997 .

[78]  R. Kinzler Melting of mantle peridotite at pressures approaching the spinel to garnet transition: Application to mid‐ocean ridge basalt petrogenesis , 1997 .

[79]  A. Kerr,et al.  Dynamic melting in plume heads: the formation of Gorgona komatiites and basalts , 1997 .

[80]  J. Mahoney,et al.  Large igneous provinces: continental, oceanic, and planetary flood volcanism , 1997 .

[81]  N. Arndt,et al.  Alteration of a Komatiite Flow from Alexo, Ontario, Canada , 1996 .

[82]  H. Yang,et al.  Experiments and models of anhydrous, basaltic olivine-plagioclase-augite saturated melts from 0.001 to 10 kbar , 1996 .

[83]  John F. Casey,et al.  Recent volcanism in the Siqueiros transform fault: picritic basalts and implications for MORB magma genesis , 1996 .

[84]  A. D. Saunders,et al.  The petrogenesis of Gorgona komatiites, picrites and basalts: new field, petrographic and geochemical constraints , 1996 .

[85]  A. McNeill,et al.  Composition and crystallization temperatures of primary melts from Hole 896A basalts: evidence from melt inclusion studies , 1996 .

[86]  A. Sobolev,et al.  H2O CONCENTRATIONS IN PRIMARY MELTS FROM SUPRA-SUBDUCTION ZONES AND MID-OCEAN RIDGES : IMPLICATIONS FOR H2O STORAGE AND RECYCLING IN THE MANTLE , 1996 .

[87]  C. Langmuir,et al.  The meaning of mean F : clarifying the mean extent of melting at ocean ridges , 1995 .

[88]  J. Meen,et al.  Compositional variations of basaltic glasses from the Mid-Cayman Rise spreading center , 1995 .

[89]  P. Michael Regionally distinctive sources of depleted MORB: Evidence from trace elements and H2O , 1995 .

[90]  F. Albarède Introduction to Geochemical Modeling , 1995 .

[91]  Mark S. Ghiorso,et al.  Chemical mass transfer in magmatic processes IV. A revised and internally consistent thermodynamic model for the interpolation and extrapolation of liquid-solid equilibria in magmatic systems at elevated temperatures and pressures , 1995 .

[92]  D. Forsyth,et al.  Geochemical constraints on initial and final depths of melting beneath mid-ocean ridges , 1995 .

[93]  N. Arndt,et al.  REE and Nd isotope geochemistry, petrogenesis and volcanic evolution of contaminated komatiites at Kambalda, Western Australia , 1995 .

[94]  A. Yasuda,et al.  Melting phase relations of an anhydrous mid-ocean ridge basalt from 3 to 20 GPa , 1994 .

[95]  I. Nikogosian Petrology of Long-Lived Mantle Plume Magmatism: Hawaii, Pacific, and Reunion Island, Indian Ocean , 1994 .

[96]  A. McBirney,et al.  Petrology and geochemistry of the Galápagos Islands: Portrait of a pathological mantle plume , 1993 .

[97]  N. Arndt,et al.  Constraining the potential temperature of the Archaean mantle: A review of the evidence from komatiites , 1993 .

[98]  P. Beattie Olivine-melt and orthopyroxene-melt equilibria , 1993 .

[99]  F. Albarède How deep do common basaltic magmas form and differentiate , 1992 .

[100]  T. Grove,et al.  Primary magmas of mid-ocean ridge basalts 2. Applications , 1992 .

[101]  C. Langmuir,et al.  Petrological systematics of mid-ocean ridge basalts: Constraints on melt generation beneath ocean ridges , 1992 .

[102]  R. Batiza,et al.  An empirical method for calculating melt compositions produced beneath mid-ocean ridges : application for axis and off-axis (seamounts) melting. , 1991 .

[103]  D. Clague,et al.  Picritic glasses from Hawaii , 1991, Nature.

[104]  D. McKenzie,et al.  Partial melt distributions from inversion of rare earth element concentrations , 1991 .

[105]  F. Albarède,et al.  The evolution of Mauna Kea Volcano, Hawaii: Petrogenesis of tholeiitic and alkalic basalts , 1991 .

[106]  J. Schilling Fluxes and excess temperatures of mantle plumes inferred from their interaction with migrating mid-ocean ridges , 1991, Nature.

[107]  D. McKenzie,et al.  Melt Generation by Plumes: A Study of Hawaiian Volcanism , 1991 .

[108]  H. Dick,et al.  Melting in the oceanic upper mantle: An ion microprobe study of diopsides in abyssal peridotites , 1990 .

[109]  R. White,et al.  Magmatism at rift zones: The generation of volcanic continental margins and flood basalts , 1989 .

[110]  T. Fujii Genesis of mid-ocean ridge basalts , 1989, Geological Society, London, Special Publications.

[111]  M. Bickle,et al.  The Volume and Composition of Melt Generated by Extension of the Lithosphere , 1988 .

[112]  R. E. Hill,et al.  The Perseverance Ultramafic Complex, Western Australia: The Product of a Komatiite Lava River , 1988 .

[113]  Anthony J. Martin,et al.  Uniquely fresh 2.7 Ga komatiites from the Belingwe greenstone belt, Zimbabwe , 1987 .

[114]  C. Langmuir,et al.  Global correlations of ocean ridge basalt chemistry with axial depth and crustal thickness , 1987 .

[115]  C. Langmuir,et al.  Oxidation states of mid-ocean ridge basalt glasses , 1986 .

[116]  N. Arndt Differentiation of Komatiite Flows , 1986 .

[117]  F. Richter Simple models for trace element fractionation during melt segregation , 1986 .

[118]  B. Aitken,et al.  Pyroclastic rocks: another manifestation of ultramafic volcanism on Gorgona Island, Colombia , 1986 .

[119]  D. Groves,et al.  Controls on the Formation of Komatiite-Associated Nickel-Copper Sulfide Deposits , 1986 .

[120]  N. Ribe The generation and composition of partial melts in the earth's mantle , 1985 .

[121]  N. Arndt Komatiites: a dirty window to the Archean mantle , 1985 .

[122]  D. McKenzie,et al.  The Generation and Compaction of Partially Molten Rock , 1984 .

[123]  B. Aitken,et al.  Petrology and geochemistry of komatiites and tholeiites from Gorgona Island, Colombia , 1984 .

[124]  I. Campbell,et al.  Archean komatiites and geotherms: Solution to an apparent contradiction , 1983 .

[125]  F. D. Stacey,et al.  The dynamical and thermal structure of deep mantle plumes , 1983 .

[126]  W. Bryan,et al.  Fractionation of pyroxene-phyric MORB at low pressure: An experimental study , 1983 .

[127]  C. Ford,et al.  Olivine-Liquid Equilibria: Temperature, Pressure and Composition Dependence of the Crystal/Liquid Cation Partition Coefficients for Mg, Fe2+, Ca and Mn , 1983 .

[128]  L. M. Echeverría Tertiary or Mesozoic komatiites from Gorgona Island, Colombia: Field relations and geochemistry , 1980 .

[129]  C. Langmuir,et al.  An evaluation of major element heterogeneity in the mantle sources of basalts , 1980, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[130]  P. Long,et al.  Magma mixing at mid-ocean ridges: Evidence from basalts drilled near 22° N on the Mid-Atlantic Ridge , 1979 .

[131]  D. Elthon High magnesia liquids as the parental magma for ocean floor basalts , 1979, Nature.

[132]  T. H. Pearce Olivine fractionation equations for basaltic and ultrabasic liquids , 1978, Nature.

[133]  C. Langmuir,et al.  Modelling of major elements in mantle-melt systems using trace element approaches , 1978 .

[134]  W. Fyfe The evolution of the earth's crust: Modern plate tectonics to ancient hot spot tectonics? , 1978 .

[135]  E. Nisbet,et al.  The Mafic and Ultramafic Lavas of the Belingwe Greenstone Belt, Rhodesia , 1977 .

[136]  T. Irvine Definition of primitive liquid compositions for basic magmas , 1977 .

[137]  D. Anderson Experimental petrology. , 1976, Science.

[138]  E. Nisbet,et al.  Basaltic and peridotitic komatiites and stromatolites above a basal unconformity in the Belingwe greenstone belt, Rhodesia , 1975 .

[139]  R. Cawthorn.,et al.  Degrees of melting in mantle diapirs and the origin of ultrabasic liquids , 1975 .

[140]  D. Swanson,et al.  Chemical compositions of Kilauea east-rift lava, 1968–1971 , 1975 .

[141]  T. L. Wright Magma Mixing as Illustrated by the 1959 Eruption, Kilauea Volcano, Hawaii , 1973 .

[142]  W. J. Morgan,et al.  Convection Plumes in the Lower Mantle , 1971, Nature.

[143]  R. Fiske,et al.  Origin of the Differentiated and Hybrid Lavas of Kilauea Volcano, Hawaii , 1971 .

[144]  T. L. Wright Chemistry of Kilauea and Mauna Loa lava in space and time , 1971 .

[145]  P. Roeder,et al.  Olivine-liquid equilibrium , 1970 .

[146]  D. Shaw Trace element fractionation during anatexis , 1970 .

[147]  M. O'hara Are Ocean Floor Basalts Primary Magma? , 1968, Nature.

[148]  P. W. Gast Trace element fractionation and the origin of tholeiitic and alkaline magma types , 1968 .

[149]  H. S. Yoder,et al.  Formation and fractionation of basic magmas at high pressures , 1967, Scottish Journal of Geology.

[150]  B. Mason Composition of the Earth , 1966, Nature.

[151]  D. Richter,et al.  Chemistry of the lavas of the 1959-60 eruption of Kilauea Volcano, Hawaii , 1966 .

[152]  J. Wilson A possible origin of the Hawaiian Islands , 1963 .

[153]  N. L. Bowen The evolution of the igneous rocks , 1956 .

[154]  A. H. The Evolution of the Igneous Rocks , 2022, Nature.