Quantum modeling of semiconductor gain materials and vertical‐external‐cavity surface‐emitting laser systems
暂无分享,去创建一个
Jorg Hader | Stephan W Koch | Thorsten Ackemann | C. Bückers | Jerome V. Moloney | Oleg Rubel | Wei Zhang | Angela Thränhardt | S. Koch | W. Zhang | J. Moloney | O. Rubel | A. Thränhardt | J. Hader | T. Ackemann | Eckhard Kühn | Christoph Schlichenmaier | Sebastian Imhof | C. Bückers | Eckhard Kühn | C. Schlichenmaier | S. Imhof | Wei Zhang
[1] E. Abrahams,et al. Impurity Conduction at Low Concentrations , 1960 .
[2] N. Holonyak,et al. Optical Properties of Gallium Arsenide-Phosphide , 1967 .
[3] J. L. Shay,et al. Reflectance Modulation by the Surface Field in GaAs , 1968 .
[4] D. Bimberg,et al. Localization induced electron‐hole transition rate enhancement in GaAs quantum wells , 1984 .
[5] Brum,et al. Calculation of carrier capture time of a quantum well in graded-index separate-confinement heterostructures. , 1986, Physical review. B, Condensed matter.
[6] S. J. Bass,et al. Investigation of InGaAs-InP quantum wells by optical spectroscopy , 1986 .
[7] S. Davey,et al. A photoluminescence study of Ga1-xInxAs/Al1-yInyAs quantum wells grown by MBE , 1988 .
[8] Stephan W Koch,et al. Quantum theory of the optical and electronic properties of semiconductors, fifth edition , 2009 .
[9] Shirley Dex,et al. JR 旅客販売総合システム(マルス)における運用及び管理について , 1991 .
[10] ELECTROABSORPTION STUDIES ON INGAAS/INGAASP QUANTUM-WELL LASER STRUCTURES , 1991 .
[11] Markus Weyers,et al. Red Shift of Photoluminescence and Absorption in Dilute GaAsN Alloy Layers , 1992 .
[12] Grandjean,et al. Surfactant effect on the surface diffusion length in epitaxial growth. , 1993, Physical review. B, Condensed matter.
[13] Adams,et al. Evidence of type-I band offsets in strained GaAs1-xSbx/GaAs quantum wells from high-pressure photoluminescence. , 1993, Physical review. B, Condensed matter.
[14] J. Massies,et al. Surfactant-mediated molecular-beam epitaxy of III–V strained-layer heterostructures , 1995 .
[15] Jerry R. Meyer,et al. Type‐II quantum‐well lasers for the mid‐wavelength infrared , 1995 .
[16] W. Chow,et al. Multi-band Bloch equations and gain spectra of highly excited II-VI semiconductor quantum wells , 1997 .
[17] M. Kuznetsov,et al. High-power (>0.5-W CW) diode-pumped vertical-external-cavity surface-emitting semiconductor lasers with circular TEM/sub 00/ beams , 1997, IEEE Photonics Technology Letters.
[18] P. Thomas,et al. Temperature-dependent exciton luminescence in quantum wells by computer simulation , 1998 .
[19] Eoin P. O'Reilly,et al. k · P Model of Ordered GaNxAs1—x , 1999 .
[20] A. Mooradian,et al. Design and characteristics of high-power (>0.5-W CW) diode-pumped vertical-external-cavity surface-emitting semiconductor lasers with circular TEM/sub 00/ beams , 1999 .
[21] Stephan W Koch,et al. Quantum theory of spontaneous emission and coherent effects in semiconductor microstructures , 1999 .
[22] E. P. O'Reilly,et al. Theory of enhanced bandgap non-parabolicity in GaNxAs1−x and related alloys , 1999 .
[23] Xiaodong Yang,et al. Molecular beam epitaxial growth of InGaAsN:Sb/GaAs quantum wells for long-wavelength semiconductor lasers , 1999 .
[24] Stephan W Koch,et al. Semiconductor-Laser Fundamentals , 1999 .
[25] H. Sigg,et al. The refractive index of AlxGa1−xAs below the band gap: Accurate determination and empirical modeling , 2000 .
[26] L. Grenouillet,et al. Evidence of strong carrier localization below 100 K in a GaInNAs/GaAs single quantum well , 2000 .
[27] A. Kasukawa,et al. 1.2 [micro sign]m range GaInAs SQW lasers using Sb as surfactant , 2000 .
[28] Jerry R. Meyer,et al. Band parameters for III–V compound semiconductors and their alloys , 2001 .
[29] É. Tournié,et al. On the origin of carrier localization in Ga1−xInxNyAs1−y/GaAs quantum wells , 2001 .
[30] Andrew G. Glen,et al. APPL , 2001 .
[31] I. Buyanova,et al. Magneto-optical and light-emission properties of III–As–N semiconductors , 2002 .
[32] Stephan W Koch,et al. Nonequilibrium model for semiconductor laser modulation response , 2002 .
[33] Stanko Tomić,et al. A quantitative study of radiative, Auger, and defect related recombination processes in 1.3-/spl mu/m GaInNAs-based quantum-well lasers , 2002 .
[34] Armis R. Zakharian,et al. Experimental and theoretical analysis of optically pumped semiconductor disk lasers , 2003 .
[35] Jorg Hader,et al. Microscopic modeling of gain and luminescence in semiconductors , 2003 .
[36] Shui-Qing Yu,et al. GaAsSb/GaAs band alignment evaluation for long-wave photonic applications , 2003 .
[37] S. A. Feld,et al. Long wavelength GaAsP/GaAs/GaAsSb VCSELs on GaAs substrates for communications applications , 2003 .
[38] J. Chauveau,et al. Annealing effects on the crystal structure of GaInNAs quantum wells with large In and N content grown by molecular beam epitaxy , 2003 .
[39] L. Lester,et al. 2.5–3.5 μm optically pumped GaInSb/AlGaInSb multiple quantum well lasers grown on AlInSb metamorphic buffer layers , 2003 .
[40] Jorg Hader,et al. Microscopic theory of gain and spontaneous emission in GaInNAs laser material , 2003 .
[41] E. Riis,et al. 0.5-W single transverse-mode operation of an 850-nm diode-pumped surface-emitting semiconductor laser , 2003, IEEE Photonics Technology Letters.
[42] W. Chow,et al. Nonequilibrium gain in optically pumped GaInNAs laser structures , 2004 .
[43] K. Kohary,et al. Hopping relaxation of excitons in GaInNAs/GaNAs quantum wells , 2004 .
[44] A. Tropper,et al. Vertical-external-cavity semiconductor lasers , 2004 .
[45] Allister I. Ferguson,et al. Optical in-well pumping of a vertical-external-cavity surface-emitting laser , 2004 .
[46] Jorg Hader,et al. Structural dependence of carrier capture time in semiconductor quantum-well lasers , 2004 .
[47] W. Chow,et al. Gain and carrier losses of (GaIn)(NAs) heterostructures in the 1300–1550 nm range , 2005 .
[48] J. Hader,et al. Microscopic evaluation of spontaneous emission- and Auger-processes in semiconductor lasers , 2005, IEEE Journal of Quantum Electronics.
[49] K. Volz,et al. Quantitative description of disorder parameters in (GaIn)(NAs) quantum wells from the temperature-dependent photoluminescence spectroscopy , 2005 .
[50] D. Burns,et al. Thermal management in vertical-external-cavity surface-emitting lasers: finite-element analysis of a heatspreader approach , 2005, IEEE Journal of Quantum Electronics.
[51] S. Koch,et al. Type I-type II transition in InGaAs–GaNAs heterostructures , 2005 .
[52] S. Koch,et al. Time-resolved photoluminescence of type-I and type-II ( GaIn ) As ∕ Ga ( NAs ) heterostructures , 2005 .
[53] Jorg Hader,et al. Nitrogen incorporation effects on gain properties of GaInNAs lasers: Experiment and theory , 2005 .
[54] Henning Riechert,et al. Low threshold InGaAsN/GaAs lasers beyond 1500 nm , 2005 .
[55] G. Blume,et al. A study of the low‐energy interference oscillations in photoreflectance of GaAsSb/GaAs quantum well structures , 2005 .
[56] Jorg Hader,et al. Influence of internal fields on gain and spontaneous emission in InGaN quantum wells , 2006 .
[57] S. Koch,et al. Closed-loop design of a semiconductor laser , 2006 .
[58] K. Kohler,et al. Optically pumped GaSb-based VECSEL emitting 0.6 W at 2.3 /spl mu/m , 2006, IEEE Photonics Technology Letters.
[59] A. C. Tropper,et al. Extended cavity surface-emitting semiconductor lasers , 2006 .
[60] Ursula Keller,et al. Passively modelocked surface-emitting semiconductor lasers , 2006 .
[61] Wei Zhang,et al. Operation of an optical in-well-pumped vertical-external-cavity surface-emitting laser. , 2006, Applied optics.
[62] I. Vurgaftman,et al. Investigation of mid-infrared type-II “W” diode lasers , 2006 .
[63] Marc T. Kelemen,et al. GaSb-based 2.X μm quantum-well diode lasers with low beam divergence and high output power , 2006 .
[64] S. Koch,et al. Microscopic simulation of semiconductor lasers at telecommunication wavelengths , 2007 .
[65] G. Blume,et al. Microscopic electroabsorption line shape analysis for Ga(AsSb)∕GaAs heterostructures , 2007 .
[66] S. Koch,et al. Quantum design of semiconductor active materials: laser and amplifier applications , 2007 .
[67] R. Kudrawiec,et al. Recent Progress on 1.55- $\mu{\hbox {m}}$ Dilute-Nitride Lasers , 2007, IEEE Journal of Quantum Electronics.
[68] Erling Riis,et al. Novel Gain Medium Design for Short-Wavelength Vertical-External-Cavity Surface-Emitting Laser , 2007, IEEE Journal of Quantum Electronics.
[69] M. Rattunde,et al. High-Brightness 2.X μm Semiconductor Lasers , 2008 .
[70] Stephan W Koch,et al. Influence of dielectric environment on quantum-well luminescence spectra , 2008 .
[71] S. Lutgen,et al. On the importance of radiative and Auger losses in GaN-based quantum wells , 2008 .
[72] J. Hopkins,et al. High‐brightness long‐wavelength semiconductor disk lasers , 2008 .
[73] Jorg Hader,et al. Microscopic calculation and measurement of the laser gain in a (GaIn)Sb quantum well structure , 2008 .
[74] M. Rattunde,et al. An improved active region concept for highly efficient GaSb-based optically in-well pumped vertical-external-cavity surface-emitting lasers , 2008 .
[75] Microscopic Modeling of Quantum Well Gain Media for VECSEL Applications , 2009, IEEE Journal of Selected Topics in Quantum Electronics.
[76] S. Koch,et al. Numerical study of the influence of an antireflection coating on the operating properties of vertical-external-cavity surface-emitting lasers , 2009 .
[77] Jorg Hader,et al. Microscopic analysis of mid-infrared type-II "w" diode lasers , 2009 .
[78] Martin D. Dawson,et al. Semiconductor disk lasers for the generation of visible and ultraviolet radiation , 2009 .
[79] W. Marsden. I and J , 2012 .
[80] MAT , 2020, Encyclopedic Dictionary of Archaeology.