Quantum modeling of semiconductor gain materials and vertical‐external‐cavity surface‐emitting laser systems

This article gives an overview of the microscopic theory used to quantitatively model a wide range of semiconductor laser gain materials. As a snapshot of the current state of research, applications to a variety of actual quantum‐well systems are presented. Detailed theory–experiment comparisons are shown and it is analyzed how the theory can be used to extract poorly known material parameters. The intrinsic laser loss processes due to radiative and nonradiative Auger recombination are evaluated microscopically. The results are used for realistic simulations of vertical‐external‐cavity surface‐emitting laser systems. To account for nonequilibrium effects, a simplified model is presented using pre‐computed microscopic scattering and dephasing rates. Prominent deviations from quasi‐equilibrium carrier distributions are obtained under strong in‐well pumping conditions.

[1]  E. Abrahams,et al.  Impurity Conduction at Low Concentrations , 1960 .

[2]  N. Holonyak,et al.  Optical Properties of Gallium Arsenide-Phosphide , 1967 .

[3]  J. L. Shay,et al.  Reflectance Modulation by the Surface Field in GaAs , 1968 .

[4]  D. Bimberg,et al.  Localization induced electron‐hole transition rate enhancement in GaAs quantum wells , 1984 .

[5]  Brum,et al.  Calculation of carrier capture time of a quantum well in graded-index separate-confinement heterostructures. , 1986, Physical review. B, Condensed matter.

[6]  S. J. Bass,et al.  Investigation of InGaAs-InP quantum wells by optical spectroscopy , 1986 .

[7]  S. Davey,et al.  A photoluminescence study of Ga1-xInxAs/Al1-yInyAs quantum wells grown by MBE , 1988 .

[8]  Stephan W Koch,et al.  Quantum theory of the optical and electronic properties of semiconductors, fifth edition , 2009 .

[9]  Shirley Dex,et al.  JR 旅客販売総合システム(マルス)における運用及び管理について , 1991 .

[10]  ELECTROABSORPTION STUDIES ON INGAAS/INGAASP QUANTUM-WELL LASER STRUCTURES , 1991 .

[11]  Markus Weyers,et al.  Red Shift of Photoluminescence and Absorption in Dilute GaAsN Alloy Layers , 1992 .

[12]  Grandjean,et al.  Surfactant effect on the surface diffusion length in epitaxial growth. , 1993, Physical review. B, Condensed matter.

[13]  Adams,et al.  Evidence of type-I band offsets in strained GaAs1-xSbx/GaAs quantum wells from high-pressure photoluminescence. , 1993, Physical review. B, Condensed matter.

[14]  J. Massies,et al.  Surfactant-mediated molecular-beam epitaxy of III–V strained-layer heterostructures , 1995 .

[15]  Jerry R. Meyer,et al.  Type‐II quantum‐well lasers for the mid‐wavelength infrared , 1995 .

[16]  W. Chow,et al.  Multi-band Bloch equations and gain spectra of highly excited II-VI semiconductor quantum wells , 1997 .

[17]  M. Kuznetsov,et al.  High-power (>0.5-W CW) diode-pumped vertical-external-cavity surface-emitting semiconductor lasers with circular TEM/sub 00/ beams , 1997, IEEE Photonics Technology Letters.

[18]  P. Thomas,et al.  Temperature-dependent exciton luminescence in quantum wells by computer simulation , 1998 .

[19]  Eoin P. O'Reilly,et al.  k · P Model of Ordered GaNxAs1—x , 1999 .

[20]  A. Mooradian,et al.  Design and characteristics of high-power (>0.5-W CW) diode-pumped vertical-external-cavity surface-emitting semiconductor lasers with circular TEM/sub 00/ beams , 1999 .

[21]  Stephan W Koch,et al.  Quantum theory of spontaneous emission and coherent effects in semiconductor microstructures , 1999 .

[22]  E. P. O'Reilly,et al.  Theory of enhanced bandgap non-parabolicity in GaNxAs1−x and related alloys , 1999 .

[23]  Xiaodong Yang,et al.  Molecular beam epitaxial growth of InGaAsN:Sb/GaAs quantum wells for long-wavelength semiconductor lasers , 1999 .

[24]  Stephan W Koch,et al.  Semiconductor-Laser Fundamentals , 1999 .

[25]  H. Sigg,et al.  The refractive index of AlxGa1−xAs below the band gap: Accurate determination and empirical modeling , 2000 .

[26]  L. Grenouillet,et al.  Evidence of strong carrier localization below 100 K in a GaInNAs/GaAs single quantum well , 2000 .

[27]  A. Kasukawa,et al.  1.2 [micro sign]m range GaInAs SQW lasers using Sb as surfactant , 2000 .

[28]  Jerry R. Meyer,et al.  Band parameters for III–V compound semiconductors and their alloys , 2001 .

[29]  É. Tournié,et al.  On the origin of carrier localization in Ga1−xInxNyAs1−y/GaAs quantum wells , 2001 .

[30]  Andrew G. Glen,et al.  APPL , 2001 .

[31]  I. Buyanova,et al.  Magneto-optical and light-emission properties of III–As–N semiconductors , 2002 .

[32]  Stephan W Koch,et al.  Nonequilibrium model for semiconductor laser modulation response , 2002 .

[33]  Stanko Tomić,et al.  A quantitative study of radiative, Auger, and defect related recombination processes in 1.3-/spl mu/m GaInNAs-based quantum-well lasers , 2002 .

[34]  Armis R. Zakharian,et al.  Experimental and theoretical analysis of optically pumped semiconductor disk lasers , 2003 .

[35]  Jorg Hader,et al.  Microscopic modeling of gain and luminescence in semiconductors , 2003 .

[36]  Shui-Qing Yu,et al.  GaAsSb/GaAs band alignment evaluation for long-wave photonic applications , 2003 .

[37]  S. A. Feld,et al.  Long wavelength GaAsP/GaAs/GaAsSb VCSELs on GaAs substrates for communications applications , 2003 .

[38]  J. Chauveau,et al.  Annealing effects on the crystal structure of GaInNAs quantum wells with large In and N content grown by molecular beam epitaxy , 2003 .

[39]  L. Lester,et al.  2.5–3.5 μm optically pumped GaInSb/AlGaInSb multiple quantum well lasers grown on AlInSb metamorphic buffer layers , 2003 .

[40]  Jorg Hader,et al.  Microscopic theory of gain and spontaneous emission in GaInNAs laser material , 2003 .

[41]  E. Riis,et al.  0.5-W single transverse-mode operation of an 850-nm diode-pumped surface-emitting semiconductor laser , 2003, IEEE Photonics Technology Letters.

[42]  W. Chow,et al.  Nonequilibrium gain in optically pumped GaInNAs laser structures , 2004 .

[43]  K. Kohary,et al.  Hopping relaxation of excitons in GaInNAs/GaNAs quantum wells , 2004 .

[44]  A. Tropper,et al.  Vertical-external-cavity semiconductor lasers , 2004 .

[45]  Allister I. Ferguson,et al.  Optical in-well pumping of a vertical-external-cavity surface-emitting laser , 2004 .

[46]  Jorg Hader,et al.  Structural dependence of carrier capture time in semiconductor quantum-well lasers , 2004 .

[47]  W. Chow,et al.  Gain and carrier losses of (GaIn)(NAs) heterostructures in the 1300–1550 nm range , 2005 .

[48]  J. Hader,et al.  Microscopic evaluation of spontaneous emission- and Auger-processes in semiconductor lasers , 2005, IEEE Journal of Quantum Electronics.

[49]  K. Volz,et al.  Quantitative description of disorder parameters in (GaIn)(NAs) quantum wells from the temperature-dependent photoluminescence spectroscopy , 2005 .

[50]  D. Burns,et al.  Thermal management in vertical-external-cavity surface-emitting lasers: finite-element analysis of a heatspreader approach , 2005, IEEE Journal of Quantum Electronics.

[51]  S. Koch,et al.  Type I-type II transition in InGaAs–GaNAs heterostructures , 2005 .

[52]  S. Koch,et al.  Time-resolved photoluminescence of type-I and type-II ( GaIn ) As ∕ Ga ( NAs ) heterostructures , 2005 .

[53]  Jorg Hader,et al.  Nitrogen incorporation effects on gain properties of GaInNAs lasers: Experiment and theory , 2005 .

[54]  Henning Riechert,et al.  Low threshold InGaAsN/GaAs lasers beyond 1500 nm , 2005 .

[55]  G. Blume,et al.  A study of the low‐energy interference oscillations in photoreflectance of GaAsSb/GaAs quantum well structures , 2005 .

[56]  Jorg Hader,et al.  Influence of internal fields on gain and spontaneous emission in InGaN quantum wells , 2006 .

[57]  S. Koch,et al.  Closed-loop design of a semiconductor laser , 2006 .

[58]  K. Kohler,et al.  Optically pumped GaSb-based VECSEL emitting 0.6 W at 2.3 /spl mu/m , 2006, IEEE Photonics Technology Letters.

[59]  A. C. Tropper,et al.  Extended cavity surface-emitting semiconductor lasers , 2006 .

[60]  Ursula Keller,et al.  Passively modelocked surface-emitting semiconductor lasers , 2006 .

[61]  Wei Zhang,et al.  Operation of an optical in-well-pumped vertical-external-cavity surface-emitting laser. , 2006, Applied optics.

[62]  I. Vurgaftman,et al.  Investigation of mid-infrared type-II “W” diode lasers , 2006 .

[63]  Marc T. Kelemen,et al.  GaSb-based 2.X μm quantum-well diode lasers with low beam divergence and high output power , 2006 .

[64]  S. Koch,et al.  Microscopic simulation of semiconductor lasers at telecommunication wavelengths , 2007 .

[65]  G. Blume,et al.  Microscopic electroabsorption line shape analysis for Ga(AsSb)∕GaAs heterostructures , 2007 .

[66]  S. Koch,et al.  Quantum design of semiconductor active materials: laser and amplifier applications , 2007 .

[67]  R. Kudrawiec,et al.  Recent Progress on 1.55- $\mu{\hbox {m}}$ Dilute-Nitride Lasers , 2007, IEEE Journal of Quantum Electronics.

[68]  Erling Riis,et al.  Novel Gain Medium Design for Short-Wavelength Vertical-External-Cavity Surface-Emitting Laser , 2007, IEEE Journal of Quantum Electronics.

[69]  M. Rattunde,et al.  High-Brightness 2.X μm Semiconductor Lasers , 2008 .

[70]  Stephan W Koch,et al.  Influence of dielectric environment on quantum-well luminescence spectra , 2008 .

[71]  S. Lutgen,et al.  On the importance of radiative and Auger losses in GaN-based quantum wells , 2008 .

[72]  J. Hopkins,et al.  High‐brightness long‐wavelength semiconductor disk lasers , 2008 .

[73]  Jorg Hader,et al.  Microscopic calculation and measurement of the laser gain in a (GaIn)Sb quantum well structure , 2008 .

[74]  M. Rattunde,et al.  An improved active region concept for highly efficient GaSb-based optically in-well pumped vertical-external-cavity surface-emitting lasers , 2008 .

[75]  Microscopic Modeling of Quantum Well Gain Media for VECSEL Applications , 2009, IEEE Journal of Selected Topics in Quantum Electronics.

[76]  S. Koch,et al.  Numerical study of the influence of an antireflection coating on the operating properties of vertical-external-cavity surface-emitting lasers , 2009 .

[77]  Jorg Hader,et al.  Microscopic analysis of mid-infrared type-II "w" diode lasers , 2009 .

[78]  Martin D. Dawson,et al.  Semiconductor disk lasers for the generation of visible and ultraviolet radiation , 2009 .

[79]  W. Marsden I and J , 2012 .

[80]  MAT , 2020, Encyclopedic Dictionary of Archaeology.