Facile Synthesis of 1,7-Phenanthroline Derivatives and Evaluation of Their Properties as Hole-Blocking Materials in Organic Light-Emitting Diodes

[1]  Jun‐Chul Choi,et al.  One-Pot Synthesis of Triazatriphenylene Using the Povarov Reaction. , 2021, Journal of Organic Chemistry.

[2]  C. Adachi,et al.  Thermally-activated Delayed Fluorescence for Light-emitting Devices , 2021 .

[3]  Xike Gao,et al.  Azulene-Pyridine-Fused Heteroaromatics. , 2020, Journal of the American Chemical Society.

[4]  Tsubasa Sasaki,et al.  Understanding coordination reaction for producing stable electrode with various low work functions , 2020, Nature Communications.

[5]  N. Kumagai,et al.  TriQuinoline , 2019, Nature Communications.

[6]  J. Yao,et al.  Excited‐State Modulation for Controlling Fluorescence and Phosphorescence Pathways toward White‐Light Emission , 2019, Advanced Optical Materials.

[7]  J. Menéndez,et al.  Progress in the Chemistry of Tetrahydroquinolines. , 2019, Chemical reviews.

[8]  J. Kido,et al.  Review of Molecular Engineering for Horizontal Molecular Orientation in Organic Light-Emitting Devices , 2019, Bulletin of the Chemical Society of Japan.

[9]  M. Akhter,et al.  Green recipes to quinoline: A review. , 2019, European journal of medicinal chemistry.

[10]  A. Gorodetsky,et al.  Aza-Diels-Alder Approach to Diquinolineanthracene and Polydiquinolineanthracene Derivatives. , 2018, Organic letters.

[11]  D. Gryko,et al.  The Tetraarylpyrrolo[3,2-b]pyrroles-From Serendipitous Discovery to Promising Heterocyclic Optoelectronic Materials. , 2017, Accounts of chemical research.

[12]  F. Palacios,et al.  Study of the Hetero-[4+2]-Cycloaddition Reaction of Aldimines and Alkynes. Synthesis of 1,5-Naphthyridine and Isoindolone Derivatives. , 2017, The Journal of organic chemistry.

[13]  G. Hernández-Sosa,et al.  A digitally printed optoelectronic nose for the selective trace detection of nitroaromatic explosive vapours using fluorescence quenching , 2017 .

[14]  M. Ingleson,et al.  Mechanistic Insights into the B(C6F5)3-Initiated Aldehyde–Aniline–Alkyne Reaction To Form Substituted Quinolines , 2017 .

[15]  G. Hernández-Sosa,et al.  Emissive Polyelectrolytes As Interlayer for Color Tuning and Electron Injection in Solution-Processed Light-Emitting Devices. , 2016, ACS applied materials & interfaces.

[16]  A. Gorodetsky,et al.  Synthesis of Nitrogen-Containing Rubicene and Tetrabenzopentacene Derivatives. , 2016, Angewandte Chemie.

[17]  J. Ziller,et al.  An Aza-Diels-Alder Approach to Crowded Benzoquinolines. , 2016, Organic letters.

[18]  Tae Whan Kim,et al.  Enhancement of out-coupling efficiency due to an organic scattering layer in organic light-emitting devices , 2015 .

[19]  U. Bunz The Larger Linear N-Heteroacenes. , 2015, Accounts of chemical research.

[20]  Seungjun Chung,et al.  Selectively modulated inkjet printing of highly conductive and transparent foldable polymer electrodes for flexible polymer light-emitting diode applications , 2015 .

[21]  J. Ziller,et al.  An Aza-Diels–Alder Route to Polyquinolines , 2015 .

[22]  J. Kido,et al.  Pyridine‐Containing Electron‐Transport Materials for Highly Efficient Blue Phosphorescent OLEDs with Ultralow Operating Voltage and Reduced Efficiency Roll‐Off , 2014 .

[23]  C. Adachi,et al.  Molecular Design of High-molecular-orientation Electron-transport Materials and Application to Organic Light-emitting Diodes , 2013 .

[24]  Samson A Jenekhe,et al.  Solution‐Processed Highly Efficient Blue Phosphorescent Polymer Light‐Emitting Diodes Enabled by a New Electron Transport Material , 2010, Advanced materials.

[25]  V. Kouznetsov Recent synthetic developments in a powerful imino Diels–Alder reaction (Povarov reaction): application to the synthesis of N-polyheterocycles and related alkaloids , 2009 .

[26]  H. Tokuyama,et al.  Auto-tandem catalysis in the synthesis of substituted quinolines from aldimines and electron-rich olefins: cascade Povarov-hydrogen-transfer reaction. , 2008, The Journal of organic chemistry.

[27]  Karsten Walzer,et al.  Ultrastable and efficient red organic light emitting diodes with doped transport layers , 2006 .

[28]  G. Hughes,et al.  Electron-transporting materials for organic electroluminescent and electrophosphorescent devices , 2005 .

[29]  Abhishek P. Kulkarni,et al.  Electron Transport Materials for Organic Light-Emitting Diodes , 2004 .

[30]  Maksudul M. Alam,et al.  New n-type organic semiconductors: synthesis, single crystal structures, cyclic voltammetry, photophysics, electron transport, and electroluminescence of a series of diphenylanthrazolines. , 2003, Journal of the American Chemical Society.

[31]  Wolfgang Kowalsky,et al.  Low-voltage organic electroluminescence device with an ultrathin, hybrid structure , 2003 .

[32]  Tetsuo Tsutsui,et al.  High electron mobility in bathophenanthroline , 2000 .

[33]  S. Forrest,et al.  VERY HIGH-EFFICIENCY GREEN ORGANIC LIGHT-EMITTING DEVICES BASED ON ELECTROPHOSPHORESCENCE , 1999 .

[34]  Ching Wan Tang,et al.  Bright-blue electroluminescence from a silyl-substituted ter-(phenylene–vinylene) derivative , 1999 .

[35]  H. Bässler,et al.  Electric field-induced photoluminescence quenching in thin-film light-emitting diodes based on poly(phenyl-p-phenylene vinylene) , 1995 .

[36]  C. R. Smith SKRAUP'S REACTION APPLIED TO THE PHENYLENEDIAMINES. PREPARATION OF THE PHENANTHROLINES AND RELATED DIPYRIDYLS , 1930 .