New Interaction Parameters for Oxygen Compounds in the GROMOS Force Field: Improved Pure-Liquid and Solvation Properties for Alcohols, Ethers, Aldehydes, Ketones, Carboxylic Acids, and Esters.

A new parameter set (53A6OXY) is developed for the GROMOS force field, that combines reoptimized parameters for the oxygen-containing chemical functions (alcohols, ethers, aldehydes, ketones, carboxylic acids, and esters) with the current biomolecular force field version (53A6) for all other functions. In the context of oxygen-containing functions, the 53A6OXY parameter set is obtained by optimization of simulated pure-liquid properties, namely the density ρliq and enthalpy of vaporization ΔHvap, as well as solvation properties, namely the free energies of solvation in water ΔGwat and in cyclohexane ΔGche, against experimental data for 10 selected organic compounds, and further tested for 25 other compounds. The simultaneous refinement of atomic charges and Lennard-Jones interaction parameters against the four mentioned types of properties provides a single parameter set for the simulation of both liquid and biomolecular systems. Small changes in the covalent parameters controlling the geometry of the oxygen-containing chemical functions are also undertaken. The new 53A6OXY force-field parameters reproduce the mentioned experimental data within root-mean-square deviations of 22.4 kg m(-3) (ρliq), 3.1 kJ mol(-1) (ΔHvap), 3.0 kJ mol(-1) (ΔGwat), and 1.7 kJ mol(-1) (ΔGche) for the 35 compounds considered.

[1]  H. Berendsen,et al.  A consistent empirical potential for water–protein interactions , 1984 .

[2]  Ronald M. Levy,et al.  The SGB/NP hydration free energy model based on the surface generalized born solvent reaction field and novel nonpolar hydration free energy estimators , 2002, J. Comput. Chem..

[3]  Donald G. Truhlar,et al.  Universal Quantum Mechanical Model for Solvation Free Energies Based on Gas-Phase Geometries , 1998 .

[4]  J. A. Barker,et al.  Monte Carlo studies of the dielectric properties of water-like models , 1973 .

[5]  H. Berendsen,et al.  ALGORITHMS FOR MACROMOLECULAR DYNAMICS AND CONSTRAINT DYNAMICS , 1977 .

[6]  Roberto D Lins,et al.  Interaction of the disaccharide trehalose with a phospholipid bilayer: a molecular dynamics study. , 2004, Biophysical journal.

[7]  Arnold Weissberger,et al.  Organic solvents;: Physical properties and methods of purification , 1970 .

[8]  A. Mark,et al.  Avoiding singularities and numerical instabilities in free energy calculations based on molecular simulations , 1994 .

[9]  H. Höltje,et al.  Consistent valence force‐field parameterization of bond lengths and angles with quantum chemical ab initio methods applied to some heterocyclic dopamine D3‐receptor agonists , 1998, J. Comput. Chem..

[10]  Karl Nicholas Kirschner,et al.  GLYCAM06: A generalizable biomolecular force field. Carbohydrates , 2008, J. Comput. Chem..

[11]  X. Daura,et al.  Validation of the GROMOS force-field parameter set 45A3 against nuclear magnetic resonance data of hen egg lysozyme , 2004, Journal of biomolecular NMR.

[12]  Wilfred F. van Gunsteren,et al.  The effect of force-field parameters on properties of liquids: Parametrization of a simple three-site model for methanol , 2000 .

[13]  Tim N. Heinz,et al.  Combining the lattice-sum and reaction-field approaches for evaluating long-range electrostatic interactions in molecular simulations. , 2005, The Journal of chemical physics.

[14]  Alessandra Villa,et al.  Calculation of the free energy of solvation for neutral analogs of amino acid side chains , 2002, J. Comput. Chem..

[15]  Lorna J. Smith,et al.  Computer Simulation of Urea−Water Mixtures: A Test of Force Field Parameters for Use in Biomolecular Simulation , 2004 .

[16]  Andrew E. Torda,et al.  The GROMOS biomolecular simulation program package , 1999 .

[17]  Wilfred F. van Gunsteren,et al.  A generalized reaction field method for molecular dynamics simulations , 1995 .

[18]  William L. Jorgensen,et al.  OPLS all‐atom force field for carbohydrates , 1997 .

[19]  W. L. Jorgensen,et al.  Development and Testing of the OPLS All-Atom Force Field on Conformational Energetics and Properties of Organic Liquids , 1996 .

[20]  Chris Oostenbrink,et al.  Molecular dynamics simulations and free energy calculations of netropsin and distamycin binding to an AAAAA DNA binding site , 2005, Nucleic acids research.

[21]  H. Berendsen,et al.  Interaction Models for Water in Relation to Protein Hydration , 1981 .

[22]  W. V. van Gunsteren,et al.  On the Calculation of Atomic Forces in Classical Simulation Using the Charge-on-Spring Method To Explicitly Treat Electronic Polarization. , 2007, Journal of chemical theory and computation.

[23]  Riccardo Baron,et al.  Conformational properties of glucose-based disaccharides investigated using molecular dynamics simulations with local elevation umbrella sampling. , 2010, Carbohydrate research.

[24]  Alexander D. MacKerell,et al.  An Improved Empirical Potential Energy Function for Molecular Simulations of Phospholipids , 2000 .

[25]  H. Berendsen,et al.  COMPUTER-SIMULATION OF MOLECULAR-DYNAMICS - METHODOLOGY, APPLICATIONS, AND PERSPECTIVES IN CHEMISTRY , 1990 .

[26]  Peter A. Kollman,et al.  AMBER: Assisted model building with energy refinement. A general program for modeling molecules and their interactions , 1981 .

[27]  W. V. van Gunsteren,et al.  Force-field dependence of the conformational properties of α,ω-dimethoxypolyethylene glycol , 2009 .

[28]  Andreas P. Eichenberger,et al.  Molecular Dynamics Simulation of Ester‐Linked Hen Egg White Lysozyme Reveals the Effect of Missing Backbone Hydrogen Bond Donors on the Protein Structure , 2010 .

[29]  Peter A. Kollman,et al.  AMBER, a package of computer programs for applying molecular mechanics, normal mode analysis, molecular dynamics and free energy calculations to simulate the structural and energetic properties of molecules , 1995 .

[30]  Chris Oostenbrink,et al.  Simulating the Physiological Phase of Hydrated DPPC Bilayers: The Ester Moiety , 2004 .

[31]  John C. Slater,et al.  The Van Der Waals Forces in Gases , 1931 .

[32]  Anna-Pitschna E. Kunz,et al.  Development of a nonlinear classical polarization model for liquid water and aqueous solutions: COS/D. , 2009, The journal of physical chemistry. A.

[33]  Roberto D. Lins,et al.  A new GROMOS force field for hexopyranose‐based carbohydrates , 2005, J. Comput. Chem..

[34]  S. Engelsen,et al.  THE CONSISTENT FORCE FIELD. II: AN OPTIMIZED SET OF POTENTIAL ENERGY FUNCTIONS FOR THE ALKANES , 1994 .

[35]  H. Berendsen,et al.  Molecular dynamics with coupling to an external bath , 1984 .

[36]  P. Hünenberger,et al.  Simulating the Transition between Gel and Liquid-Crystal Phases of Lipid Bilayers: Dependence of the Transition Temperature on the Hydration Level. , 2010, Journal of Chemical Theory and Computation.

[37]  Philippe H. Hünenberger,et al.  Using the local elevation method to construct optimized umbrella sampling potentials: Calculation of the relative free energies and interconversion barriers of glucopyranose ring conformers in water , 2010, J. Comput. Chem..

[38]  William L. Jorgensen,et al.  OPLS potential functions for nucleotide bases. Relative association constants of hydrogen-bonded base pairs in chloroform , 1991 .

[39]  Norman L. Allinger,et al.  Molecular mechanics. The MM3 force field for hydrocarbons. 2. Vibrational frequencies and thermodynamics , 1989 .

[40]  W. V. van Gunsteren,et al.  Cyclic beta-helical/beta-hairpin D,L-alpha-peptide: study of its folding properties and structure refinement using molecular dynamics. , 2010, The journal of physical chemistry. A.

[41]  Alexander D. MacKerell,et al.  An all-atom empirical energy function for the simulation of nucleic acids , 1995 .

[42]  Wilfred F van Gunsteren,et al.  Calculation of the free energy of polarization: quantifying the effect of explicitly treating electronic polarization on the transferability of force-field parameters. , 2007, The journal of physical chemistry. B.

[43]  Jane R. Allison,et al.  A method to explore protein side chain conformational variability using experimental data. , 2009, Chemphyschem : a European journal of chemical physics and physical chemistry.

[44]  Chris Oostenbrink,et al.  An improved nucleic acid parameter set for the GROMOS force field , 2005, J. Comput. Chem..

[45]  J. Kirkwood Statistical Mechanics of Fluid Mixtures , 1935 .

[46]  Herman J. C. Berendsen Simulating the Physical World: Symbols, units and constants , 2007 .

[47]  J. Banavar,et al.  Computer Simulation of Liquids , 1988 .

[48]  Tim N. Heinz,et al.  Comparison of four methods to compute the dielectric permittivity of liquids from molecular dynamics simulations , 2001 .

[49]  Norman L. Allinger,et al.  Molecular mechanics. The MM3 force field for hydrocarbons. 3. The van der Waals' potentials and crystal data for aliphatic and aromatic hydrocarbons , 1989 .

[50]  X. Daura,et al.  Parametrization of aliphatic CHn united atoms of GROMOS96 force field , 1998 .

[51]  Lukas D. Schuler,et al.  On the Choice of Dihedral Angle Potential Energy Functions for n-Alkanes , 2000 .

[52]  W. V. van Gunsteren,et al.  The performance of non-polarizable and polarizable force-field parameter sets for ethylene glycol in molecular dynamics simulations of the pure liquid and its aqueous mixtures , 2007 .

[53]  Norman L. Allinger,et al.  Molecular mechanics. The MM3 force field for hydrocarbons. 1 , 1989 .

[54]  G. Ciccotti,et al.  Numerical Integration of the Cartesian Equations of Motion of a System with Constraints: Molecular Dynamics of n-Alkanes , 1977 .

[55]  P. Hünenberger,et al.  Interaction of the sugars trehalose, maltose and glucose with a phospholipid bilayer: a comparative molecular dynamics study. , 2006, The journal of physical chemistry. B.

[56]  Matthias Huber,et al.  Structure and dynamics of two β-peptides in solution from molecular dynamics simulations validated against experiment , 2008, European Biophysics Journal.

[57]  Chris Oostenbrink,et al.  A biomolecular force field based on the free enthalpy of hydration and solvation: The GROMOS force‐field parameter sets 53A5 and 53A6 , 2004, J. Comput. Chem..

[58]  A. Mark,et al.  Disturb or stabilize? A molecular dynamics study of the effects of resorcinolic lipids on phospholipid bilayers. , 2009, Biophysical journal.

[59]  Anna-Pitschna E. Kunz,et al.  A one-site polarizable model for liquid chloroform: COS/C , 2010 .

[60]  Wilfred F van Gunsteren,et al.  Biomolecular modeling: Goals, problems, perspectives. , 2006, Angewandte Chemie.

[61]  P. Kollman,et al.  A Second Generation Force Field for the Simulation of Proteins, Nucleic Acids, and Organic Molecules , 1995 .

[62]  Wilfred F. van Gunsteren,et al.  An improved GROMOS96 force field for aliphatic hydrocarbons in the condensed phase , 2001, J. Comput. Chem..

[63]  Wilfred F van Gunsteren,et al.  Force field evaluation for biomolecular simulation: free enthalpies of solvation of polar and apolar compounds in various solvents. , 2006, Chemphyschem : a European journal of chemical physics and physical chemistry.

[64]  Sandeep Patel,et al.  Nonadditive empirical force fields for short-chain linear alcohols: methanol to butanol. Hydration free energetics and Kirkwood-Buff analysis using charge equilibration models. , 2010, The journal of physical chemistry. B.

[65]  O. Tapia,et al.  On the sensitivity of MD trajectories to changes in water‐protein interaction parameters: The potato carboxypeptidase inhibitor in water as a test case for the GROMOS force field , 1996, Proteins.

[66]  Kenneth J. Miller,et al.  Additivity methods in molecular polarizability , 1990 .

[67]  Jiangtao Wu,et al.  Viscosity of Saturated Liquid Dimethyl Ether from (227 to 343) K , 2003 .

[68]  Jussi T. S. Heikkilä,et al.  Enthalpies of Vaporization of Organic Compounds. III. Amines. , 1969 .

[69]  Alexander D. MacKerell,et al.  CHARMM additive all-atom force field for aldopentofuranoses, methyl-aldopentofuranosides, and fructofuranose. , 2009, The journal of physical chemistry. B.

[70]  P. Hünenberger,et al.  Interaction of the disaccharides trehalose and gentiobiose with lipid bilayers: a comparative molecular dynamics study. , 2010, Journal of molecular graphics & modelling.

[71]  W. V. Gunsteren,et al.  Validation of the 53A6 GROMOS force field , 2005, European Biophysics Journal.

[72]  W. V. van Gunsteren,et al.  Acetonitrile revisited: a molecular dynamics study of the liquid phase , 2006 .

[73]  Kjeld Rasmussen,et al.  The Consistent Force Field. 1. Methods and Strategies for Optimization of Empirical Potential Energy Functions. , 1994 .

[74]  Alexander D. MacKerell,et al.  Accurate Calculation of Hydration Free Energies using Pair-Specific Lennard-Jones Parameters in the CHARMM Drude Polarizable Force Field. , 2010, Journal of chemical theory and computation.

[75]  D. Peter Tieleman,et al.  A consistent potential energy parameter set for lipids: dipalmitoylphosphatidylcholine as a benchmark of the GROMOS96 45A3 force field , 2003, European Biophysics Journal.

[76]  Gregory D. Hawkins,et al.  Extension of the platform of applicability of the SM5.42R universal solvation model , 1999 .

[77]  P. Hünenberger,et al.  Molecular dynamics simulation of lipid bilayers with GROMOS96: Application of surface tension , 2005 .

[78]  P. Hünenberger,et al.  pH-Dependent Stability of a Decalysine α-Helix Studied by Explicit-Solvent Molecular Dynamics Simulations at Constant pH , 2004 .

[79]  Wilfred F van Gunsteren,et al.  Molecular dynamics simulations of a double unit cell in a protein crystal: Volume relaxation at constant pressure and correlation of motions between the two unit cells , 2002, Proteins.

[80]  Jenn-Huei Lii,et al.  Alcohols, ethers, carbohydrates, and related compounds. I. The MM4 force field for simple compounds , 2003, J. Comput. Chem..

[81]  Markus Christen,et al.  The GROMOS software for biomolecular simulation: GROMOS05 , 2005, J. Comput. Chem..

[82]  Wilfred F. van Gunsteren,et al.  A new force field for simulating phosphatidylcholine bilayers , 2010, J. Comput. Chem..