Two Optimal Value Functions in Parametric Conic Linear Programming

We consider the conic linear program given by a closed convex cone in an Euclidean space and a matrix, where vector on the right-hand-side of the constraint system and the vector defining the objective function are subject to change. Using the strict feasibility condition, we prove the locally Lipschitz continuity and obtain some differentiability properties of the optimal value function of the problem under right-hand-side perturbations. For the optimal value function under linear perturbations of the objective function, similar differentiability properties are obtained under the assumption saying that both primal problem and dual problem are strictly feasible.

[1]  David G. Luenberger,et al.  Linear and nonlinear programming , 1984 .

[2]  N. D. Yen Stability of the Solution Set of Perturbed Nonsmooth Inequality Systems and Application , 1997 .

[4]  J. Tolle,et al.  Differential Stability in Nonlinear Programming , 1977 .

[5]  Some Differential Estimates in Linear Programming , 2016 .

[6]  Arkadi Nemirovski,et al.  Lectures on modern convex optimization - analysis, algorithms, and engineering applications , 2001, MPS-SIAM series on optimization.

[7]  Boris S. Mordukhovich,et al.  Subgradients of marginal functions in parametric mathematical programming , 2008, Math. Program..

[8]  Hayato Waki,et al.  Perturbation Analysis of Singular Semidefinite Programs and Its Applications to Control Problems , 2016, J. Optim. Theory Appl..

[9]  R. Rockafellar Conjugate Duality and Optimization , 1987 .

[10]  François Dubeau,et al.  Some examples and counterexamples for the stability analysis of nonlinear programming problems , 1984 .

[11]  T. Terlaky,et al.  Parametric analysis of semidefinite optimization , 2018, Optimization.

[12]  Ying Xiong Nonlinear Optimization , 2014 .

[13]  A. Shapiro ON DUALITY THEORY OF CONIC LINEAR PROBLEMS , 2001 .

[14]  Vaithilingam Jeyakumar,et al.  Convergent conic linear programming relaxations for cone convex polynomial programs , 2017, Oper. Res. Lett..

[15]  N. D. Yen,et al.  Differential stability of convex optimization problems under inclusion constraints , 2015 .

[16]  Jacques Gauvin Formulae for the Sensitivity Analysis of Linear Programming Problems , 2001 .

[17]  L. Thibault On subdifferential of optimal value functions , 1991 .

[18]  R. Rockafellar Lagrange multipliers and subderivatives of optimal value functions in nonlinear programming , 1982 .

[19]  Christian Kanzow,et al.  On the Abadie and Guignard constraint qualifications for Mathematical Programmes with Vanishing Constraints , 2009 .

[20]  J. Frédéric Bonnans,et al.  Perturbation Analysis of Optimization Problems , 2000, Springer Series in Operations Research.

[21]  J. Gauvin,et al.  Differential properties of the marginal function in mathematical programming , 1982 .

[22]  Bernhard Gollan,et al.  On The Marginal Function in Nonlinear Programming , 1984, Math. Oper. Res..

[23]  B. Mordukhovich Variational Analysis and Generalized Differentiation II: Applications , 2006 .

[24]  丸山 徹 Convex Analysisの二,三の進展について , 1977 .

[26]  David G. Luenberger,et al.  Conic Linear Programming , 2021, Linear and Nonlinear Programming.

[27]  T. Terlaky,et al.  The Optimal Set and Optimal Partition Approach to Linear and Quadratic Programming , 1996 .