An improved, fully symmetric, finite-strain phenomenological constitutive model for shape memory alloys

[1]  Alessandro Reali,et al.  On the robustness and efficiency of integration algorithms for a 3D finite strain phenomenological SMA constitutive model , 2011 .

[2]  T. P. G. Thamburaja A finite-deformation-based phenomenological theory for shape-memory alloys , 2010 .

[3]  F. Auricchio,et al.  A 3D finite strain phenomenological constitutive model for shape memory alloys considering martensite reorientation , 2010 .

[4]  Alessandro Reali,et al.  A 3-D phenomenological constitutive model for shape memory alloys under multiaxial loadings , 2010 .

[5]  S. Reese,et al.  Anisotropic finite elastoplasticity with nonlinear kinematic and isotropic hardening and application to sheet metal forming , 2010 .

[6]  武 田村 “Elastoplasticity Theory”(弾塑性理論) , 2010 .

[7]  E. Sacco,et al.  A 3D SMA constitutive model in the framework of finite strain , 2010 .

[8]  Stefanie Reese,et al.  A finite element model for shape memory alloys considering thermomechanical couplings at large strains , 2009 .

[9]  Stefanie Reese,et al.  On the modelling of non‐linear kinematic hardening at finite strains with application to springback—Comparison of time integration algorithms , 2008 .

[10]  Wael Zaki,et al.  Theoretical and numerical modeling of solid–solid phase change: Application to the description of the thermomechanical behavior of shape memory alloys , 2008 .

[11]  R. Mahnken,et al.  Simulation of asymmetric effects for shape memory alloys by decomposition of transformation strains , 2008 .

[12]  Stefanie Reese,et al.  Finite deformation pseudo-elasticity of shape memory alloys – Constitutive modelling and finite element implementation , 2008 .

[13]  M. Collet,et al.  Implementation of a model taking into account the asymmetry between tension and compression, the temperature effects in a finite element code for shape memory alloys structures calculations , 2007 .

[14]  L. Brinson,et al.  A three-dimensional phenomenological model for martensite reorientation in shape memory alloys , 2007 .

[15]  A. Ziółkowski,et al.  Three-dimensional phenomenological thermodynamic model of pseudoelasticity of shape memory alloys at finite strains , 2007 .

[16]  Dimitris C. Lagoudas,et al.  A 3-D constitutive model for shape memory alloys incorporating pseudoelasticity and detwinning of self-accommodated martensite , 2007 .

[17]  Jian Wang,et al.  Experimental and numerical study of the superelastic behaviour on NiTi thin-walled tube under biaxial loading , 2007 .

[18]  O. Bruhns,et al.  A thermodynamic finite-strain model for pseudoelastic shape memory alloys , 2006 .

[19]  K. Kuribayashi,et al.  Self-deployable origami stent grafts as a biomedical application of Ni-rich TiNi shape memory alloy foil , 2006 .

[20]  F. Auricchio,et al.  A three‐dimensional model describing stress‐temperature induced solid phase transformations: solution algorithm and boundary value problems , 2004 .

[21]  Lorenza Petrini,et al.  A three‐dimensional model describing stress‐temperature induced solid phase transformations: thermomechanical coupling and hybrid composite applications , 2004 .

[22]  Dirk Helm,et al.  Shape memory behaviour: modelling within continuum thermomechanics , 2003 .

[23]  Lorenza Petrini,et al.  Improvements and algorithmical considerations on a recent three‐dimensional model describing stress‐induced solid phase transformations , 2002 .

[24]  T. Tadaki,et al.  Shape Memory Alloys , 2002 .

[25]  Dirk Helm,et al.  Thermomechanical behavior of shape memory alloys , 2001, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[26]  Ferdinando Auricchio,et al.  A robust integration-algorithm for a finite-strain shape-memory-alloy superelastic model , 2001 .

[27]  A. Pelton,et al.  An overview of nitinol medical applications , 1999 .

[28]  Peter Haupt,et al.  Continuum Mechanics and Theory of Materials , 1999 .

[29]  E. N. Mamiya,et al.  Three-dimensional model for solids undergoing stress-induced phase transformations , 1998 .

[30]  C. Lexcellent,et al.  Thermodynamics of isotropic pseudoelasticity in shape memory alloys , 1998 .

[31]  Ferdinando Auricchio,et al.  Shape-memory alloys: modelling and numerical simulations of the finite-strain superelastic behavior , 1997 .

[32]  Christian Miehe,et al.  Exponential Map Algorithm for Stress Updates in Anisotropic Multiplicative Elastoplasticity for Single Crystals , 1996 .

[33]  C. M. Wayman,et al.  Engineering Aspects of Shape Memory Alloys , 1990 .

[34]  L. Schetky Shape-memory alloys , 1979 .

[35]  K. Bathe,et al.  A HYPERELASTIC-BASED LARGE STRAIN ELASTO-PLASTIC CONSTITUTIVE FORMULATION WITH COMBINED ISOTROPIC-KINEMATIC HARDENING USING THE LOGARITHMIC STRESS AND STRAIN MEASURES , 2005 .

[36]  S. Calloch,et al.  A phenomenological model for pseudoelasticity of shape memory alloys under multiaxial proportional and nonproportional loadings , 2004 .

[37]  C. M. Wayman,et al.  Shape-Memory Materials , 2018 .