Quadratic functions and maximal Artin-Schreier curves

For an odd prime p and an even integer n with gcd@?(n,p)=1, we consider quadratic functions from F"p"^"n to F"p of codimension k. For various values of k, we obtain classes of quadratic functions giving rise to maximal and minimal Artin-Schreier curves over F"p"^"n. We completely classify all maximal and minimal curves obtained from quadratic functions of codimension 2 and coefficients in the prime field F"p.

[1]  A. N. Parshin Algebraic curves over functional fields with a finite field of constants , 1974 .

[2]  Robert J. McEliece,et al.  Weights of Irreducible Cyclic Codes , 1972, Inf. Control..

[3]  W. Bosma,et al.  HANDBOOK OF MAGMA FUNCTIONS , 2011 .

[4]  Robert S. Coulter On the evaluation of a class of Weil sums in characteristic 2 , 1999 .

[5]  Robert S. Coulter The Number of Rational Points of a Class of Artin-Schreier Curves , 2002 .

[6]  K. Conrad,et al.  Finite Fields , 2018, Series and Products in the Development of Mathematics.

[7]  H. Niederreiter,et al.  Rational Points on Curves Over Finite Fields: Theory and Applications , 2001 .

[8]  J. Wolfmann The number of points on certain algebraic curves over finite fields , 1989 .

[9]  Guang Gong,et al.  A New Characterization of Semi-bent and Bent Functions on Finite Fields* , 2006, Des. Codes Cryptogr..

[10]  F. Özbudak,et al.  Some Artin–Schreier type function fields over finite fields with prescribed genus and number of rational places , 2007 .

[11]  Robert S. Coulter Further evaluations of Weil sums , 1998 .

[12]  Xuejia Lai,et al.  Additive and Linear Structures of Cryptographic Functions , 1994, FSE.

[13]  Guang Gong,et al.  Constructions of quadratic bent functions in polynomial forms , 2006, IEEE Transactions on Information Theory.

[14]  Tor Helleseth,et al.  Monomial and quadratic bent functions over the finite fields of odd characteristic , 2006, IEEE Transactions on Information Theory.

[15]  Wilfried Meidl,et al.  Enumeration of Quadratic Functions With Prescribed Walsh Spectrum , 2014, IEEE Transactions on Information Theory.

[16]  Robert W. Fitzgerald,et al.  Trace forms over finite fields of characteristic 2 with prescribed invariants , 2009, Finite Fields Their Appl..

[17]  Marcel van der Vlugt,et al.  Reed-Muller codes and supersingular curves. I , 1992 .

[18]  Yuliang Zheng,et al.  On plateaued functions , 1999, IEEE Trans. Inf. Theory.

[19]  Henning Stichtenoth,et al.  Algebraic function fields and codes , 1993, Universitext.

[20]  Ferruh Özbudak,et al.  Quadratic forms of codimension 2 over certain finite fields of even characteristic , 2011, Cryptography and Communications.

[21]  Rudolf Lide,et al.  Finite fields , 1983 .

[22]  Robert S. Coulter Explicit evaluations of some Weil sums , 1998 .

[23]  Keqin Feng,et al.  Weight distribution of some reducible cyclic codes , 2008, Finite Fields Their Appl..

[24]  Ferruh Özbudak,et al.  Curves related to Coulter's maximal curves , 2008, Finite Fields Their Appl..

[25]  Xiwang Cao,et al.  A method of evaluation of exponential sum of binary quadratic functions , 2012, Finite Fields Their Appl..

[26]  Keqin Feng,et al.  On the Weight Distributions of Two Classes of Cyclic Codes , 2008, IEEE Transactions on Information Theory.

[27]  F. Torres,et al.  Algebraic Curves over Finite Fields , 1991 .

[28]  Robert W. Fitzgerald,et al.  Highly degenerate quadratic forms over finite fields of characteristic 2 , 2005, Finite Fields Their Appl..

[29]  Pascale Charpin,et al.  On bent and semi-bent quadratic Boolean functions , 2005, IEEE Transactions on Information Theory.

[30]  Wilfried Meidl,et al.  A construction of weakly and non-weakly regular bent functions , 2010, J. Comb. Theory, Ser. A.

[31]  Dengguo Feng,et al.  On Quadratic Bent Functions in Polynomial Forms , 2007, IEEE Transactions on Information Theory.

[32]  Ferruh Özbudak,et al.  Quadratic forms of codimension 2 over finite fields containing F2 and Artin-Schreier type curves , 2012, Finite Fields Their Appl..

[33]  Wilfried Meidl,et al.  A construction of bent functions from plateaued functions , 2013, Des. Codes Cryptogr..