Advances in High‐Performance Carbon‐Nanotube Thin‐Film Electronics

The device standards necessary for high‐performance carbon nanotube (CNT) field‐effect transistors (FETs) for integrated circuits (ICs) are discussed by illustrating key device metrics. Recent advances in solution‐processed CNT network‐materials are introduced and some important progress made in CNT‐network film‐based transistors and ICs is explored. The status of aligned CNT thin‐film materials and representative work in high‐performance electronics is discussed. Finally, the major challenges to the further development of high‐performance CNT thin‐film electronics and the prospects in this exciting field are summarized.

[1]  Lianmao Peng,et al.  Exploring the Performance Limit of Carbon Nanotube Network Film Field‐Effect Transistors for Digital Integrated Circuit Applications , 2019, Advanced Functional Materials.

[2]  H. Peng,et al.  Dirac-source field-effect transistors as energy-efficient, high-performance electronic switches , 2018, Science.

[3]  Lianmao Peng,et al.  Aligning Solution‐Derived Carbon Nanotube Film with Full Surface Coverage for High‐Performance Electronics Applications , 2018, Advanced materials.

[4]  Lianmao Peng,et al.  Continuous adjustment of threshold voltage in carbon nanotube field-effect transistors through gate engineering , 2018 .

[5]  K. Jenkins,et al.  Flexible CMOS integrated circuits based on carbon nanotubes with sub-10 ns stage delays , 2018 .

[6]  Heng Zhang,et al.  High-Performance Carbon Nanotube Complementary Electronics and Integrated Sensor Systems on Ultrathin Plastic Foil. , 2018, ACS nano.

[7]  Jia Si,et al.  Scalable Preparation of High-Density Semiconducting Carbon Nanotube Arrays for High-Performance Field-Effect Transistors. , 2018, ACS nano.

[8]  John Zhu,et al.  Comparative Analysis of Semiconductor Device Architectures for 5-nm Node and Beyond , 2017, IEEE Electron Device Letters.

[9]  Jianshi Tang,et al.  High-speed logic integrated circuits with solution-processed self-assembled carbon nanotubes. , 2017, Nature nanotechnology.

[10]  Jerry Tersoff,et al.  Carbon nanotube transistors scaled to a 40-nanometer footprint , 2017, Science.

[11]  D. Corliss,et al.  Stacked nanosheet gate-all-around transistor to enable scaling beyond FinFET , 2017, 2017 Symposium on VLSI Technology.

[12]  Li Ding,et al.  High-Performance Complementary Transistors and Medium-Scale Integrated Circuits Based on Carbon Nanotube Thin Films. , 2017, ACS nano.

[13]  Lianmao Peng,et al.  Scaling carbon nanotube complementary transistors to 5-nm gate lengths , 2017, Science.

[14]  Gerald J. Brady,et al.  Quasi-ballistic carbon nanotube array transistors with current density exceeding Si and GaAs , 2016, Science Advances.

[15]  Lianmao Peng,et al.  Highly Uniform Carbon Nanotube Field-Effect Transistors and Medium Scale Integrated Circuits. , 2016, Nano letters.

[16]  Xiaowei He,et al.  Wafer-scale monodomain films of spontaneously aligned single-walled carbon nanotubes. , 2016, Nature nanotechnology.

[17]  M. Yudasaka,et al.  Industrial-scale separation of high-purity single-chirality single-wall carbon nanotubes for biological imaging , 2016, Nature Communications.

[18]  Stephen Barlow,et al.  Controlled n-Type Doping of Carbon Nanotube Transistors by an Organorhodium Dimer. , 2016, Nano letters.

[19]  C. Kim,et al.  Solution-processed carbon nanotube thin-film complementary static random access memory. , 2015, Nature nanotechnology.

[20]  M. A. Wahab,et al.  Direct current injection and thermocapillary flow for purification of aligned arrays of single-walled carbon nanotubes , 2015 .

[21]  Su Zhang,et al.  A versatile approach to obtain a high-purity semiconducting single-walled carbon nanotube dispersion with conjugated polymers. , 2015, Chemical communications.

[22]  W. Haensch,et al.  Origins and characteristics of the threshold voltage variability of quasiballistic single-walled carbon nanotube field-effect transistors. , 2015, ACS nano.

[23]  Jia Si,et al.  Carbon nanotube feedback-gate field-effect transistor: suppressing current leakage and increasing on/off ratio. , 2015, ACS nano.

[24]  J. Rogers,et al.  Laser-induced nanoscale thermocapillary flow for purification of aligned arrays of single-walled carbon nanotubes. , 2014, ACS nano.

[25]  Ha Uk Chung,et al.  Microwave purification of large-area horizontally aligned arrays of single-walled carbon nanotubes , 2014, Nature Communications.

[26]  Feng Ding,et al.  Chirality-specific growth of single-walled carbon nanotubes on solid alloy catalysts , 2014, Nature.

[27]  F. Hennrich,et al.  Separation of single-walled carbon nanotubes with a gel permeation chromatography system. , 2014, ACS nano.

[28]  Z. Cui,et al.  Designing large-plane conjugated copolymers for the high-yield sorting of semiconducting single-walled carbon nanotubes. , 2013, Chemical communications.

[29]  H.-S. Philip Wong,et al.  Carbon nanotube computer , 2013, Nature.

[30]  Tobin J Marks,et al.  Subnanowatt carbon nanotube complementary logic enabled by threshold voltage control. , 2013, Nano letters.

[31]  A. Green,et al.  Diameter Refinement of Semiconducting Arc Discharge Single-Walled Carbon Nanotubes via Density Gradient Ultracentrifugation , 2013 .

[32]  P. H. Lau,et al.  Fully printed, high performance carbon nanotube thin-film transistors on flexible substrates. , 2013, Nano letters.

[33]  S. Datta,et al.  Nanoscale Transistors—Just Around the Gate? , 2013, Science.

[34]  Qiang Zhang,et al.  Growth of half-meter long carbon nanotubes based on Schulz-Flory distribution. , 2013, ACS nano.

[35]  Aaron D. Franklin,et al.  Electronics: The road to carbon nanotube transistors , 2013, Nature.

[36]  W. Haensch,et al.  Carbon nanotube complementary wrap-gate transistors. , 2013, Nano letters.

[37]  John A Rogers,et al.  Using nanoscale thermocapillary flows to create arrays of purely semiconducting single-walled carbon nanotubes. , 2013, Nature nanotechnology.

[38]  W. Haensch,et al.  Arrays of single-walled carbon nanotubes with full surface coverage for high-performance electronics. , 2013, Nature nanotechnology.

[39]  Z. Bao,et al.  A review of fabrication and applications of carbon nanotube film-based flexible electronics. , 2013, Nanoscale.

[40]  Lianmao Peng,et al.  A doping-free approach to carbon nanotube electronics and optoelectronics , 2012 .

[41]  Y. Nishi,et al.  Engineering the metal gate electrode for controlling the threshold voltage of organic transistors , 2012 .

[42]  Sheng Wang,et al.  Carbon nanotube based ultra-low voltage integrated circuits: Scaling down to 0.4 V , 2012 .

[43]  C. Auth,et al.  A 22nm high performance and low-power CMOS technology featuring fully-depleted tri-gate transistors, self-aligned contacts and high density MIM capacitors , 2012, 2012 Symposium on VLSI Technology (VLSIT).

[44]  Mark S. Lundstrom,et al.  Sub-10 nm carbon nanotube transistor , 2011, 2011 International Electron Devices Meeting.

[45]  A. Green,et al.  Nearly Single‐Chirality Single‐Walled Carbon Nanotubes Produced via Orthogonal Iterative Density Gradient Ultracentrifugation , 2011, Advanced materials.

[46]  S. Khondaker,et al.  Semiconducting enriched carbon nanotube aligned arrays of tunable density and their electrical transport properties. , 2011, ACS nano.

[47]  H. Kataura,et al.  Large-scale single-chirality separation of single-wall carbon nanotubes by simple gel chromatography , 2011, Nature communications.

[48]  Antonio Rubio,et al.  Manufacturing variability analysis in Carbon Nanotube Technology: A comparison with bulk CMOS in 6T SRAM scenario , 2011, 14th IEEE International Symposium on Design and Diagnostics of Electronic Circuits and Systems.

[49]  Chongwu Zhou,et al.  Air-stable conversion of separated carbon nanotube thin-film transistors from p-type to n-type using atomic layer deposition of high-κ oxide and its application in CMOS logic circuits. , 2011, ACS nano.

[50]  Sang Won Lee,et al.  Scalable complementary logic gates with chemically doped semiconducting carbon nanotube transistors. , 2011, ACS nano.

[51]  S. Kishimoto,et al.  Flexible high-performance carbon nanotube integrated circuits. , 2011, Nature nanotechnology.

[52]  S. Hoeppener,et al.  Strategies for Post‐Synthesis Alignment and Immobilization of Carbon Nanotubes , 2011, Advanced materials.

[53]  Paul Stokes,et al.  Ultrahigh density alignment of carbon nanotube arrays by dielectrophoresis. , 2011, ACS nano.

[54]  T. Fujigaya,et al.  One-pot Separation of Highly Enriched (6,5)-Single-walled Carbon Nanotubes Using a Fluorene-based Copolymer , 2011 .

[55]  Qin Zhang,et al.  Low-Voltage Tunnel Transistors for Beyond CMOS Logic , 2010, Proceedings of the IEEE.

[56]  Y. Nishi,et al.  Bilayer metal gate electrodes with tunable work function: Adhesion and interface characterization , 2010 .

[57]  Yan Li,et al.  Y-contacted high-performance n-type single-walled carbon nanotube field-effect transistors: scaling and comparison with Sc-contacted devices. , 2009, Nano letters.

[58]  Ming Zheng,et al.  DNA sequence motifs for structure-specific recognition and separation of carbon nanotubes , 2009, Nature.

[59]  H. Wong,et al.  Wafer-Scale Growth and Transfer of Aligned Single-Walled Carbon Nanotubes , 2009, IEEE Transactions on Nanotechnology.

[60]  A. Sokolov,et al.  Self-sorted nanotube networks on polymer dielectrics for low-voltage thin-film transistors. , 2009, Nano letters.

[61]  Yagang Yao,et al.  "Cloning" of single-walled carbon nanotubes via open-end growth mechanism. , 2009, Nano letters.

[62]  Jie Liu,et al.  Selective growth of well-aligned semiconducting single-walled carbon nanotubes. , 2009, Nano letters.

[63]  Phaedon Avouris,et al.  Carbon nanotube electronics and photonics , 2009 .

[64]  H. Wong,et al.  Analytical ballistic theory of carbon nanotube transistors: Experimental validation, device physics, parameter extraction, and performance projection , 2008 .

[65]  Phaedon Avouris,et al.  Thin film nanotube transistors based on self-assembled, aligned, semiconducting carbon nanotube arrays. , 2008, ACS nano.

[66]  Yasumitsu Miyata,et al.  High-Yield Separation of Metallic and Semiconducting Single-Wall Carbon Nanotubes by Agarose Gel Electrophoresis , 2008 .

[67]  Yan Li,et al.  Self-aligned ballistic n-type single-walled carbon nanotube field-effect transistors with adjustable threshold voltage. , 2008, Nano letters.

[68]  S. Barman,et al.  Self-Sorted, Aligned Nanotube Networks for Thin-Film Transistors , 2008, Science.

[69]  J. Rogers,et al.  Medium-scale carbon nanotube thin-film integrated circuits on flexible plastic substrates , 2008, Nature.

[70]  Zhongfan Liu,et al.  Sorting out Semiconducting Single-Walled Carbon Nanotube Arrays by Preferential Destruction of Metallic Tubes Using Xenon-Lamp Irradiation , 2008 .

[71]  K. Suh,et al.  Capillarity-driven fluidic alignment of single-walled carbon nanotubes in reversibly bonded nanochannels. , 2008, Small.

[72]  R. Chau,et al.  A 45nm Logic Technology with High-k+Metal Gate Transistors, Strained Silicon, 9 Cu Interconnect Layers, 193nm Dry Patterning, and 100% Pb-free Packaging , 2007, 2007 IEEE International Electron Devices Meeting.

[73]  Yan Li,et al.  Doping-Free Fabrication of Carbon Nanotube Based Ballistic CMOS Devices and Circuits , 2007 .

[74]  R. Nicholas,et al.  Highly selective dispersion of single-walled carbon nanotubes using aromatic polymers. , 2007, Nature nanotechnology.

[75]  P. Avouris,et al.  Carbon-based electronics. , 2007, Nature nanotechnology.

[76]  Li Zhang,et al.  Langmuir-blodgett assembly of densely aligned single-walled carbon nanotubes from bulk materials. , 2007, Journal of the American Chemical Society.

[77]  H. Dai,et al.  Selective Etching of Metallic Carbon Nanotubes by Gas-Phase Reaction , 2006, Science.

[78]  Mark C. Hersam,et al.  Sorting carbon nanotubes by electronic structure using density differentiation , 2006, Nature nanotechnology.

[79]  Arvind Kumar,et al.  Silicon CMOS devices beyond scaling , 2006, IBM J. Res. Dev..

[80]  W. L. Wang,et al.  Direct synthesis of B-C-N single-walled nanotubes by bias-assisted hot filament chemical vapor deposition. , 2006, Journal of the American Chemical Society.

[81]  Houjin Huang,et al.  Preferential destruction of metallic single-walled carbon nanotubes by laser irradiation. , 2006, The journal of physical chemistry. B.

[82]  Young Hee Lee,et al.  Preferential etching of metallic single-walled carbon nanotubes with small diameter by fluorine gas , 2006 .

[83]  R. Pachauri Climate change: is the US Congress bullying experts? , 2005, Nature.

[84]  M. Arnold,et al.  Enrichment of single-walled carbon nanotubes by diameter in density gradients. , 2005, Nano letters.

[85]  T. Skotnicki,et al.  The end of CMOS scaling: toward the introduction of new materials and structural changes to improve MOSFET performance , 2005, IEEE Circuits and Devices Magazine.

[86]  P. Umek,et al.  Selective etching of metallic single-wall carbon nanotubes with hydrogen plasma , 2005, Nanotechnology.

[87]  R. Chau,et al.  Benchmarking nanotechnology for high-performance and low-power logic transistor applications , 2004, IEEE Transactions on Nanotechnology.

[88]  M. Lundstrom,et al.  Self-Aligned Ballistic Molecular Transistors and Electrically Parallel Nanotube Arrays , 2004, cond-mat/0406494.

[89]  P. McEuen,et al.  Electron Transport in Single-Walled Carbon Nanotubes , 2004 .

[90]  M. Lundstrom,et al.  Ballistic carbon nanotube field-effect transistors , 2003, Nature.

[91]  Chenming Hu,et al.  MOSFET gate leakage modeling and selection guide for alternative gate dielectrics based on leakage considerations , 2003 .

[92]  M. Zheng,et al.  DNA-assisted dispersion and separation of carbon nanotubes , 2003, Nature materials.

[93]  S. Wind,et al.  Field-modulated carrier transport in carbon nanotube transistors. , 2002, Physical review letters.

[94]  Juin J. Liou,et al.  A review of recent MOSFET threshold voltage extraction methods , 2002, Microelectron. Reliab..

[95]  A. J. Snell,et al.  AC characteristics of Cr/p/sup +/a-Si:H/V analog switching devices , 2000 .

[96]  Daniel E. Resasco,et al.  Controlled production of single-wall carbon nanotubes by catalytic decomposition of CO on bimetallic Co–Mo catalysts , 2000 .

[97]  R. Siezen,et al.  others , 1999, Microbial Biotechnology.

[98]  W. K. Maser,et al.  Large-scale production of single-walled carbon nanotubes by the electric-arc technique , 1997, Nature.

[99]  Gordon E. Moore,et al.  The microprocessor: engine of the technology revolution , 1997, CACM.

[100]  A. Rinzler,et al.  SINGLE-WALL NANOTUBES PRODUCED BY METAL-CATALYZED DISPROPORTIONATION OF CARBON MONOXIDE , 1996 .

[101]  Pavel Nikolaev,et al.  Catalytic growth of single-walled manotubes by laser vaporization , 1995 .

[102]  A. Toriumi,et al.  Experimental study of threshold voltage fluctuation due to statistical variation of channel dopant number in MOSFET's , 1994 .

[103]  P. Solomon,et al.  A comparison of semiconductor devices for high-speed logic , 1982, Proceedings of the IEEE.

[104]  R.H. Dennard,et al.  Design Of Ion-implanted MOSFET's with Very Small Physical Dimensions , 1974, Proceedings of the IEEE.

[105]  Lin Xu,et al.  Gigahertz integrated circuits based on carbon nanotube films , 2018 .

[106]  Lianmao Peng,et al.  Carbon nanotube network film-based ring oscillators with sub 10-ns propagation time and their applications in radio-frequency signal transmission , 2017, Nano Research.

[107]  Yong-Bin Kim,et al.  Design of a CNTFET-Based SRAM Cell by Dual-Chirality Selection , 2010, IEEE Transactions on Nanotechnology.

[108]  M. Fuhrer,et al.  Extraordinary Mobility in Semiconducting Carbon Nanotubes , 2004 .

[109]  Thomas A. DeMassa,et al.  Digital Integrated Circuits , 1985, 1985 IEEE GaAs IC Symposium Technical Digest.

[110]  John F. Wakerly,et al.  Digital design - principles and practices , 1990, Prentice Hall Series in computer engineering.