The 'permeome' of the malaria parasite: an overview of the membrane transport proteins of Plasmodium falciparum

[1]  S. Korn,et al.  Potassium channels , 2005, IEEE Transactions on NanoBioscience.

[2]  D. Sanders The mechanism of Cl− transport at the plasma membrane ofChara corallina I. Cotransport with H+ , 1980, The Journal of Membrane Biology.

[3]  Virgilio L. Lew,et al.  Volume, pH, and ion-content regulation in human red cells: Analysis of transient behavior with an integrated model , 2005, The Journal of Membrane Biology.

[4]  A. Alkhalil,et al.  Plasmodium falciparum likely encodes the principal anion channel on infected human erythrocytes. , 2004, Blood.

[5]  David S Roos,et al.  Curation of the Plasmodium falciparum genome. , 2004, Trends in parasitology.

[6]  Kiaran Kirk,et al.  The malaria parasite's chloroquine resistance transporter is a member of the drug/metabolite transporter superfamily. , 2004, Molecular biology and evolution.

[7]  T. Tiffert,et al.  Plasmodium falciparum expresses a multidrug resistance-associated protein. , 2004, Biochemical and biophysical research communications.

[8]  C. Chong,et al.  Copper pathways in Plasmodium falciparum infected erythrocytes indicate an efflux role for the copper P-ATPase. , 2004, The Biochemical journal.

[9]  A. Bröer,et al.  Hartnup disorder is caused by mutations in the gene encoding the neutral amino acid transporter SLC6A19 , 2004, Nature Genetics.

[10]  Anne Mills,et al.  Conquering the intolerable burden of malaria: what's new, what's needed: a summary. , 2004, The American journal of tropical medicine and hygiene.

[11]  K. Kirk,et al.  Inhibition of hexose transport and abrogation of pH homeostasis in the intraerythrocytic malaria parasite by an O‐3‐hexose derivative , 2004, FEBS letters.

[12]  I. Coppens,et al.  Neutral lipid synthesis and storage in the intraerythrocytic stages of Plasmodium falciparum. , 2004, Molecular and biochemical parasitology.

[13]  T. Litman,et al.  Molecular cloning of a K(+) channel from the malaria parasite Plasmodium falciparum. , 2004, Biochemical and biophysical research communications.

[14]  Ping Xu,et al.  Complete Genome Sequence of the Apicomplexan, Cryptosporidium parvum , 2004, Science.

[15]  Kiaran Kirk,et al.  The Membrane Potential of the Intraerythrocytic Malaria Parasite Plasmodium falciparum* , 2004, Journal of Biological Chemistry.

[16]  Toshihiro Horii,et al.  Developmental-stage-specific triacylglycerol biosynthesis, degradation and trafficking as lipid bodies in Plasmodium falciparum-infected erythrocytes , 2004, Journal of Cell Science.

[17]  R. Coleman,et al.  The Plasmodium falciparum PfGatp is an Endoplasmic Reticulum Membrane Protein Important for the Initial Step of Malarial Glycerolipid Synthesis* , 2004, Journal of Biological Chemistry.

[18]  Y. Liu,et al.  Mutagenesis of the putative sterol-sensing domain of yeast Niemann Pick C–related protein reveals a primordial role in subcellular sphingolipid distribution , 2004, The Journal of cell biology.

[19]  K. Kirk Channels and transporters as drug targets in the Plasmodium-infected erythrocyte. , 2004, Acta tropica.

[20]  M. Saier,et al.  The principal chloroquine resistance protein of Plasmodium falciparum is a member of the drug/metabolite transporter superfamily. , 2004, Microbiology.

[21]  J. Schultz,et al.  Adenylyl cyclases from Plasmodium, Paramecium and Tetrahymena are novel ion channel/enzyme fusion proteins. , 2004, Cellular signalling.

[22]  J. Ashurst,et al.  Gene annotation: prediction and testing. , 2003, Annual review of genomics and human genetics.

[23]  H. Balaram,et al.  Stage-specific profiling of Plasmodium falciparum proteases using an internally quenched multispecificity protease substrate. , 2003, Biochemical and biophysical research communications.

[24]  B. Ghaleh,et al.  Structure and pharmacology of swelling‐sensitive chloride channels, ICl,swell , 2003, Fundamental & clinical pharmacology.

[25]  M. Kavanaugh,et al.  Equilibrative Nucleoside Transporter Family Members from Leishmania donovani Are Electrogenic Proton Symporters* , 2003, Journal of Biological Chemistry.

[26]  Patricia De la Vega,et al.  Discovery of Gene Function by Expression Profiling of the Malaria Parasite Life Cycle , 2003, Science.

[27]  Darren A. Natale,et al.  The COG database: an updated version includes eukaryotes , 2003, BMC Bioinformatics.

[28]  S. Krishna,et al.  Artemisinins target the SERCA of Plasmodium falciparum , 2003, Nature.

[29]  J. Derisi,et al.  The Transcriptome of the Intraerythrocytic Developmental Cycle of Plasmodium falciparum , 2003, PLoS biology.

[30]  S. Krishna,et al.  Validation of the hexose transporter of Plasmodium falciparum as a novel drug target , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[31]  J. Javitch,et al.  Characterization of a Functional Bacterial Homologue of Sodium-dependent Neurotransmitter Transporters* , 2003, The Journal of Biological Chemistry.

[32]  K. Kirk,et al.  Acidification of the Malaria Parasite's Digestive Vacuole by a H+-ATPase and a H+-pyrophosphatase* , 2003, The Journal of Biological Chemistry.

[33]  B. Andemariam,et al.  A two-compartment model of osmotic lysis in Plasmodium falciparum-infected erythrocytes. , 2003, Biophysical journal.

[34]  Mario Pazzagli,et al.  Quantitative real-time reverse transcription polymerase chain reaction: normalization to rRNA or single housekeeping genes is inappropriate for human tissue biopsies. , 2002, Analytical biochemistry.

[35]  J. Schug,et al.  The Plasmodium genome database , 2002, Nature.

[36]  Jonathan E. Allen,et al.  Genome sequence of the human malaria parasite Plasmodium falciparum , 2002, Nature.

[37]  G. Yellen The voltage-gated potassium channels and their relatives , 2002, Nature.

[38]  M. Ouellette,et al.  A New Type of High Affinity Folic Acid Transporter in the Protozoan Parasite Leishmania and Deletion of Its Gene in Methotrexate-resistant Cells* , 2002, The Journal of Biological Chemistry.

[39]  H. Staines,et al.  A stretch‐activated anion channel is up‐regulated by the malaria parasite plasmodium falciparum , 2002, The Journal of physiology.

[40]  S A Bustin,et al.  Quantification of mRNA using real-time reverse transcription PCR (RT-PCR): trends and problems. , 2002, Journal of molecular endocrinology.

[41]  R. Vicente,et al.  One-step reverse transcription polymerase chain reaction for semiquantitative analysis of mRNA expression. , 2002, Methods and findings in experimental and clinical pharmacology.

[42]  S. Verjovski-Almeida,et al.  Whole-Genome Analysis of Transporters in the Plant Pathogen Xylella fastidiosa , 2002, Microbiology and Molecular Biology Reviews.

[43]  J. Clements,et al.  Identification of novel membrane proteins by searching for patterns in hydropathy profiles. , 2002, European journal of biochemistry.

[44]  V. Stein,et al.  Molecular structure and physiological function of chloride channels. , 2002, Physiological reviews.

[45]  P. Wilairat,et al.  Stage specificity of Plasmodium falciparum telomerase and its inhibition by berberine. , 2002, Parasitology international.

[46]  E. Beitz,et al.  A Single, Bi-functional Aquaglyceroporin in Blood-stagePlasmodium falciparum Malaria Parasites* , 2002, The Journal of Biological Chemistry.

[47]  H. Ginsburg,et al.  Intraerythrocytic Plasmodium falciparum utilizes only a fraction of the amino acids derived from the digestion of host cell cytosol for the biosynthesis of its proteins. , 2002, Molecular and biochemical parasitology.

[48]  R. Dutzler,et al.  X-ray structure of a ClC chloride channel at 3.0 Å reveals the molecular basis of anion selectivity , 2002, Nature.

[49]  F. Lang,et al.  Plasmodium falciparum activates endogenous Cl− channels of human erythrocytes by membrane oxidation , 2002, The EMBO journal.

[50]  Benjamin A. Shoemaker,et al.  CDD: a database of conserved domain alignments with links to domain three-dimensional structure , 2002, Nucleic Acids Res..

[51]  J Zuegge,et al.  Deciphering apicoplast targeting signals--feature extraction from nuclear-encoded precursors of Plasmodium falciparum apicoplast proteins. , 2001, Gene.

[52]  Fabienne Thomarat,et al.  Genome sequence and gene compaction of the eukaryote parasite Encephalitozoon cuniculi , 2001, Nature.

[53]  M. Kimura,et al.  Characterization of P-type ATPase 3 in Plasmodium falciparum. , 2001, Molecular and biochemical parasitology.

[54]  R. Gerardy-Schahn,et al.  Nucleotide sugar transporters: biological and functional aspects. , 2001, Biochimie.

[55]  D. Sanders,et al.  A novel low-affinity H+-Cl- co-transporter in yeast: characterization by patch clamp , 2001 .

[56]  K. Kirk,et al.  Perturbation of the pump-leak balance for Na(+) and K(+) in malaria-infected erythrocytes. , 2001, American journal of physiology. Cell physiology.

[57]  P. A. Rea,et al.  Two classes of plant-like vacuolar-type H(+)-pyrophosphatases in malaria parasites. , 2001, Molecular and biochemical parasitology.

[58]  Alan K. Mackworth,et al.  Evaluation of gene-finding programs on mammalian sequences. , 2001, Genome research.

[59]  S. Krishna,et al.  Expression and Functional Characterization of a Plasmodium falciparum Ca2+-ATPase (PfATP4) Belonging to a Subclass Unique to Apicomplexan Organisms* , 2001, The Journal of Biological Chemistry.

[60]  Fude Fang,et al.  Fudenine, a C-terminal truncated rat homologue of mouse prominin, is blood glucose-regulated and can up-regulate the expression of GAPDH. , 2001, Biochemical and biophysical research communications.

[61]  L. Nachin,et al.  SoxR‐dependent response to oxidative stress and virulence of Erwinia chrysanthemi: the key role of SufC, an orphan ABC ATPase , 2001, Molecular microbiology.

[62]  Christian Hott,et al.  Co‐ordinated programme of gene expression during asexual intraerythrocytic development of the human malaria parasite Plasmodium falciparum revealed by microarray analysis , 2001, Molecular microbiology.

[63]  K. Kirk,et al.  Membrane transport in the malaria-infected erythrocyte , 2000 .

[64]  Zhifu Zheng,et al.  The Initial Step of the Glycerolipid Pathway IDENTIFICATION OF GLYCEROL 3-PHOSPHATE/DIHYDROXYACETONE PHOSPHATE DUAL SUBSTRATE ACYLTRANSFERASES IN SACCHAROMYCES CEREVISIAE * , 2001 .

[65]  M. Solanas,et al.  Unsuitability of using ribosomal RNA as loading control for Northern blot analyses related to the imbalance between messenger and ribosomal RNA content in rat mammary tumors. , 2001, Analytical biochemistry.

[66]  Michael Y. Galperin,et al.  The COG database: new developments in phylogenetic classification of proteins from complete genomes , 2001, Nucleic Acids Res..

[67]  T. Mitamura,et al.  Vacuolar H+-ATPase Localized in Plasma Membranes of Malaria Parasite Cells, Plasmodium falciparum, Is Involved in Regional Acidification of Parasitized Erythrocytes* , 2000, The Journal of Biological Chemistry.

[68]  K. Simons,et al.  Jamming the endosomal system: lipid rafts and lysosomal storage diseases. , 2000, Trends in cell biology.

[69]  J. Wootton,et al.  Mutations in the P. falciparum digestive vacuole transmembrane protein PfCRT and evidence for their role in chloroquine resistance. , 2000, Molecular cell.

[70]  S. Bustin Absolute quantification of mRNA using real-time reverse transcription polymerase chain reaction assays. , 2000, Journal of molecular endocrinology.

[71]  J. Zimmerberg,et al.  A voltage-dependent channel involved in nutrient uptake by red blood cells infected with the malaria parasite , 2000, Nature.

[72]  B. Stevens,et al.  A Novel Electrogenic Amino Acid Transporter Is Activated by K+ or Na+, Is Alkaline pH-dependent, and Is Cl−-independent* , 2000, The Journal of Biological Chemistry.

[73]  I. Paulsen,et al.  Microbial genome analyses: comparative transport capabilities in eighteen prokaryotes. , 2000, Journal of molecular biology.

[74]  V. Ganapathy,et al.  Primary Structure, Genomic Organization, and Functional and Electrogenic Characteristics of Human System N 1, a Na+- and H+-coupled Glutamine Transporter* , 2000, The Journal of Biological Chemistry.

[75]  M. Hediger,et al.  A Novel System A Isoform Mediating Na+/Neutral Amino Acid Cotransport* , 2000, The Journal of Biological Chemistry.

[76]  F. Kishi,et al.  Human NRAMP2/DMT1, Which Mediates Iron Transport across Endosomal Membranes, Is Localized to Late Endosomes and Lysosomes in HEp-2 Cells* , 2000, The Journal of Biological Chemistry.

[77]  G. McConkey,et al.  Identification of a nucleoside/nucleobase transporter from Plasmodium falciparum, a novel target for anti-malarial chemotherapy. , 2000, The Biochemical journal.

[78]  M. Saier A Functional-Phylogenetic Classification System for Transmembrane Solute Transporters , 2000, Microbiology and Molecular Biology Reviews.

[79]  D. Goldberg,et al.  Isolation and Functional Characterization of the PfNT1 Nucleoside Transporter Gene from Plasmodium falciparum * , 2000, The Journal of Biological Chemistry.

[80]  S. Lewis,et al.  Genome annotation assessment in Drosophila melanogaster. , 2000, Genome research.

[81]  Zbynek Bozdech,et al.  Protein transport in the host cell cytoplasm and ATP-binding cassette proteins in Plasmodium falciparum-infected erythrocytes. , 2007, Novartis Foundation symposium.

[82]  W. Halford The essential prerequisites for quantitative RT-PCR , 1999, Nature Biotechnology.

[83]  S. Mager,et al.  Cloning and Functional Expression of a Human Na+and Cl−-dependent Neutral and Cationic Amino Acid Transporter B0+ * , 1999, The Journal of Biological Chemistry.

[84]  R. Gwilliam,et al.  The complete nucleotide sequence of chromosome 3 of Plasmodium falciparum , 1999, Nature.

[85]  M. Ouellette,et al.  Increased transport of pteridines compensates for mutations in the high affinity folate transporter and contributes to methotrexate resistance in the protozoan parasite Leishmania tarentolae , 1999, The EMBO journal.

[86]  C. Woodrow,et al.  Intraerythrocytic Plasmodium falciparum Expresses a High Affinity Facilitative Hexose Transporter* , 1999, The Journal of Biological Chemistry.

[87]  B. Gebhardt,et al.  The inherent quantitative capacity of the reverse transcription-polymerase chain reaction. , 1999, Analytical biochemistry.

[88]  S. Mager,et al.  Cloning and functional expression of a human Na(+) and Cl(-)-dependent neutral and cationic amino acid transporter B(0+). , 1999, The Journal of biological chemistry.

[89]  E V Koonin,et al.  Chromosome 2 sequence of the human malaria parasite Plasmodium falciparum. , 1998, Science.

[90]  D. Slotboom,et al.  Hydropathy profile alignment: a tool to search for structural homologues of membrane proteins. , 1998, FEMS microbiology reviews.

[91]  A. Thomas,et al.  Precise Timing of Expression of a Plasmodium falciparum-derived Transgene in Plasmodium berghei Is a Critical Determinant of Subsequent Subcellular Localization* , 1998, The Journal of Biological Chemistry.

[92]  M. Hediger,et al.  Cloning and characterization of a potassium-coupled amino acid transporter. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[93]  A. Vaidya,et al.  Plasmodium falciparum: import of a phosphate carrier protein into heterologous mitochondria. , 1998, Experimental parasitology.

[94]  I. Paulsen,et al.  Major Facilitator Superfamily , 1998, Microbiology and Molecular Biology Reviews.

[95]  N Sasaki,et al.  Thermostabilization and thermoactivation of thermolabile enzymes by trehalose and its application for the synthesis of full length cDNA. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[96]  P. Rather,et al.  Identification and Characterization ofaarF, a Locus Required for Production of Ubiquinone inProvidencia stuartii and Escherichia coli and for Expression of 2′-N-Acetyltransferase inP. stuartii , 1998 .

[97]  C. G. Black,et al.  Malaria parasite DNA , 1998 .

[98]  P. Robbins,et al.  Transporters of nucleotide sugars, ATP, and nucleotide sulfate in the endoplasmic reticulum and Golgi apparatus. , 1998, Annual review of biochemistry.

[99]  Irwin W. Sherman,et al.  Malaria : parasite biology, pathogenesis, and protection , 1998 .

[100]  Michael Y. Galperin,et al.  Sources of systematic error in functional annotation of genomes: domain rearrangement, non-orthologous gene displacement, and operon disruption , 1998, Silico Biol..

[101]  P. Rather,et al.  Identification and characterization of aarF, a locus required for production of ubiquinone in Providencia stuartii and Escherichia coli and for expression of 2'-N-acetyltransferase in P. stuartii. , 1998, Journal of bacteriology.

[102]  Thomas L. Madden,et al.  Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. , 1997, Nucleic acids research.

[103]  A. Cowman,et al.  Cloning and sequence analysis of a novel member of the ATP-binding cassette (ABC) protein gene family from Plasmodium falciparum. , 1996, Molecular and biochemical parasitology.

[104]  K. Feldmann,et al.  Arabidopsis AUX1 Gene: A Permease-Like Regulator of Root Gravitropism , 1996, Science.

[105]  W. Frommer,et al.  Salt stress-induced proline transporters and salt stress-repressed broad specificity amino acid permeases identified by suppression of a yeast amino acid permease-targeting mutant. , 1996, The Plant cell.

[106]  R. Mikkelsen,et al.  Analysis of a cation-transporting ATPase of Plasmodium falciparum. , 1996, Molecular and biochemical parasitology.

[107]  M. Jackson,et al.  Signal-mediated sorting of membrane proteins between the endoplasmic reticulum and the golgi apparatus. , 1996, Annual review of cell and developmental biology.

[108]  W. Frommer,et al.  Substrate Specificity and Expression Profile of Amino Acid Transporters (AAPs) in Arabidopsis(*) , 1995, The Journal of Biological Chemistry.

[109]  C. R. Vázquez de Aldana,et al.  GCN20, a novel ATP binding cassette protein, and GCN1 reside in a complex that mediates activation of the eIF‐2 alpha kinase GCN2 in amino acid‐starved cells. , 1995, The EMBO journal.

[110]  J. Nikawa,et al.  Isolation and characterization of a SCT1 gene which can suppress a choline-transport mutant of Saccharomyces cerevisiae. , 1995, Journal of biochemistry.

[111]  A. Cowman,et al.  Molecular cloning and sequence of two novel P-type adenosinetriphosphatases from Plasmodium falciparum. , 1995, European journal of biochemistry.

[112]  J. Thompson,et al.  CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. , 1994, Nucleic acids research.

[113]  H. Ginsburg,et al.  Hexose-monophosphate shunt activity in intact Plasmodium falciparum-infected erythrocytes and in free parasites. , 1994, Molecular and biochemical parasitology.

[114]  C. Newbold,et al.  Transport of diverse substrates into malaria-infected erythrocytes via a pathway showing functional characteristics of a chloride channel. , 1994, The Journal of biological chemistry.

[115]  K. Gottesdiener A new VSG expression site-associated gene (ESAG) in the promoter region of Trypanosoma brucei encodes a protein with 10 potential transmembrane domains. , 1994, Molecular and biochemical parasitology.

[116]  Y. Yamaguchi,et al.  Cloning of a Ca(2+)-ATPase gene of Plasmodium falciparum and comparison with vertebrate Ca(2+)-ATPases. , 1993, Journal of cell science.

[117]  J. Stringer,et al.  A family of cation ATPase-like molecules from Plasmodium falciparum , 1993, The Journal of cell biology.

[118]  C. Wilson,et al.  Characterization of the pfmdr2 gene for Plasmodium falciparum. , 1993, Molecular and biochemical parasitology.

[119]  B. Tang,et al.  Protein trafficking along the exocytotic pathway. , 1993, BioEssays : news and reviews in molecular, cellular and developmental biology.

[120]  P. Slonimski,et al.  ABC1, a novel yeast nuclear gene has a dual function in mitochondria: it suppresses a cytochrome b mRNA translation defect and is essential for the electron transfer in the bc 1 complex. , 1991, The EMBO journal.

[121]  W. Stuart,et al.  Sequence and structure of mtr, an amino acid transport gene of Neurospora crassa. , 1991, Genome.

[122]  A. Cowman,et al.  A P-glycoprotein homologue of Plasmodium falciparum is localized on the digestive vacuole , 1991, The Journal of cell biology.

[123]  E. Myers,et al.  Basic local alignment search tool. , 1990, Journal of molecular biology.

[124]  A. Cowman,et al.  Amplification of the multidrug resistance gene in some chloroquine-resistant isolates of P. falciparum , 1989, Cell.

[125]  C. Wilson,et al.  Amplification of a gene related to mammalian mdr genes in drug-resistant Plasmodium falciparum. , 1989, Science.

[126]  P Lee,et al.  X-ray microanalysis of Plasmodium falciparum and infected red blood cells: effects of qinghaosu and chloroquine on potassium, sodium, and phosphorus composition. , 1988, The American journal of tropical medicine and hygiene.

[127]  J. Rothman Protein sorting by selective retention in the endoplasmic reticulum and Golgi stack , 1987, Cell.

[128]  J. Jensen,et al.  Nutritional requirements of Plasmodium falciparum in culture. I. Exogenously supplied dialyzable components necessary for continuous growth. , 1985, The Journal of protozoology.

[129]  M. de Rojas,et al.  Temporal relationships on macromolecular synthesis during the asexual cell cycle of Plasmodium falciparum. , 1985, Transactions of the Royal Society of Tropical Medicine and Hygiene.

[130]  R. Reese,et al.  Protein and nucleic acid synthesis during synchronized growth of Plasmodium falciparum , 1984, Journal of bacteriology.

[131]  M D Jensen,et al.  Culture of Plasmodium falciparum: the role of pH, glucose, and lactate. , 1983, The Journal of parasitology.

[132]  P. Nguyen-Dinh,et al.  Plasmodium falciparum: stage-specific lactate production in synchronized cultures. , 1982, Experimental parasitology.

[133]  C. Lambros,et al.  Synchronization of Plasmodium falciparum erythrocytic stages in culture. , 1979, The Journal of parasitology.

[134]  W. Trager,et al.  Human malaria parasites in continuous culture. , 1976, Science.