Testing Extreme Value Models

AbstractWe consider the full statistical families of extreme value distributions $$G_{\beta ,\sigma ,\mu } $$ and generalized Pareto distributions $$H_{\beta ,\sigma ,\mu } $$ , where $$\beta \in \mathbb{R},\sigma > 0$$ , and $$\mu \in \mathbb{R}$$ denote the shape, scale and location parameters, respectively. We consider the testing problems $$\beta \geqslant 0$$ against $$\beta < 0$$ and β = 0 against β ≠ 0, where σ and μ are treated as nuisance parameters. Showing local asymptotic normality (LAN), we derive asymptotic envelope power functions for test sequences and establish tests which attain these upper bounds. The finite sample size behavior is studied by simulations.

[1]  W. E. Bardsley A test for distinguishing between extreme value distributions , 1977 .

[2]  A. Otten,et al.  The power of two tests on the type of distributions of extremes , 1978 .

[3]  J. Hüsler,et al.  Laws of Small Numbers: Extremes and Rare Events , 1994 .

[4]  Frank Marohn An Adaptive Efficient Test for Gumbel Domain of Attraction , 1998 .

[5]  W. J. Hall,et al.  On large-sample estimation and testing in parametric models , 1990 .

[6]  M.A.J. van Montfort,et al.  On testing a shape parameter in the presence of a location and a scale parameter , 1978 .

[7]  E. Gumbel,et al.  Statistics of extremes , 1960 .

[8]  W. J. Hall,et al.  Asymptotically uniformly most powerful tests in parametric and semiparametric models , 1996 .

[9]  M.A.J. Van Montfort,et al.  On testing that the distribution of extremes is of type I when type II is the alternative , 1970 .

[10]  G. A. Whitmore,et al.  Case Studies in Data Analysis , 1998 .

[11]  Michael A. Stephens,et al.  Goodness of fit for the extreme value distribution , 1977 .

[12]  James V. Bondar,et al.  Mathematical theory of statistics , 1985 .

[13]  Frank Marohn,et al.  Testing the Gumbel Hypothesis Via the Pot-Method , 1998 .

[14]  Enrique Castillo,et al.  The Selection of the Domain of Attraction of an Extreme Value Distribution from a Set of Data , 1989 .

[15]  Rolf-Dieter Reiss,et al.  A Course on Point Processes , 1992 .

[16]  J. Z. Wang,et al.  DETERMINATION OF DOMAINS OF ATTRACTION BASED ON A SEQUENCE OF MAXIMA , 1996 .

[17]  M. Ivette Gomes,et al.  Inference in a Multivariate Generalized Extreme Value Model-Asymptotic Properties of Two Test Statistics , 1986 .

[18]  J. V. Witter,et al.  Testing exponentiality against generalised Pareto distribution , 1985 .

[19]  Hermann Witting,et al.  Mathematische Statistik II , 1985 .

[20]  Frank Marohn,et al.  ON TESTING THE EXPONENTIAL AND GUMBEL DISTRIBUTION , 1994 .

[21]  R. Reiss Approximate Distributions of Order Statistics: With Applications to Nonparametric Statistics , 1989 .

[22]  J. Hosking Testing whether the shape parameter is zero in the generalized extreme-value distribution , 1984 .

[23]  A. M. Hasofer,et al.  A Test for Extreme Value Domain of Attraction , 1992 .

[24]  R. Reiss,et al.  Statistical Analysis of Extreme Values-with applications to insurance , 1997 .