Computing the Discrete Fréchet Distance with Imprecise Input
暂无分享,去创建一个
[1] Günter Rote. Computing the Fréchet distance between piecewise smooth curves , 2007, Comput. Geom..
[2] Alistair Moffat,et al. Compression and Coding Algorithms , 2005, IEEE Trans. Inf. Theory.
[3] Herbert Edelsbrunner,et al. Geometry and Topology for Mesh Generation , 2001, Cambridge monographs on applied and computational mathematics.
[4] Martin E. Dyer,et al. A class of convex programs with applications to computational geometry , 1992, SCG '92.
[5] Boris Aronov,et al. Fréchet Distance for Curves, Revisited , 2006, ESA.
[6] Sivan Toledo,et al. Applications of parametric searching in geometric optimization , 1992, SODA '92.
[7] Maarten Löffler,et al. Delaunay triangulation of imprecise points in linear time after preprocessing , 2010, Comput. Geom..
[8] Helmut Alt,et al. Computing the Fréchet distance between two polygonal curves , 1995, Int. J. Comput. Geom. Appl..
[9] Helmut Alt,et al. Comparison of Distance Measures for Planar Curves , 2003, Algorithmica.
[10] Helmut Alt,et al. Matching Polygonal Curves with Respect to the Fréchet Distance , 2001, STACS.
[11] Maarten Löffler,et al. Largest and Smallest Tours and Convex Hulls for Imprecise Points , 2006, SWAT.
[12] Herbert Edelsbrunner,et al. Geometry and Topology for Mesh Generation , 2001, Cambridge monographs on applied and computational mathematics.
[13] Micha Sharir,et al. Efficient algorithms for geometric optimization , 1998, CSUR.
[14] William S. Evans,et al. Guaranteed Voronoi Diagrams of Uncertain Sites , 2008, CCCG.
[15] Abbas Edalat,et al. Computing Delaunay Triangulation with Imprecise Input Data , 2003, CCCG.
[16] Donald B. Johnson,et al. Generalized Selection and Ranking: Sorted Matrices , 1984, SIAM J. Comput..
[17] Maarten Löffler,et al. The Directed Hausdorff Distance between Imprecise Point Sets , 2009, ISAAC.