A discrete uniformization theorem for polyhedral surfaces

A discrete conformality for polyhedral metrics on surfaces is introduced in this paper which generalizes earlier work on the subject. It is shown that each polyhedral metric on a surface is discrete conformal to a constant curvature polyhedral metric which is unique up to scaling. Furthermore, the constant curvature metric can be found using a discrete Yamabe flow with surgery.

[1]  R. Connelly The Rigidity of Polyhedral Surfaces , 1979 .

[2]  Discrete Conformal Geometry of Polyhedral Surfaces and Its Convergence , 2020, 2009.12706.

[3]  Y. C. Verdière Un principe variationnel pour les empilements de cercles , 1991 .

[4]  D. Epstein,et al.  Natural triangulations associated to a surface , 1988 .

[5]  A. Bobenko,et al.  Variational principles for circle patterns and Koebe’s theorem , 2002, math/0203250.

[6]  Tobin A. Driscoll,et al.  Schwarz-Christoffel mapping in the computer era. , 1998 .

[7]  F. W. Warner,et al.  Curvature Functions for Compact 2-Manifolds , 1974 .

[8]  C. Mercat Discrete Riemann Surfaces and the Ising Model , 2001, 0909.3600.

[9]  Polyhedral hyperbolic metrics on surfaces , 2008, 0801.0538.

[10]  Sa’ar Hersonsky Discrete harmonic maps and convergence to conformal maps, I: Combinatorial harmonic coordinates , 2015 .

[11]  F. Bonahon Variations of the boundary geometry of $3$-dimensional hyperbolic convex cores , 1997, dg-ga/9704016.

[12]  Kenneth Stephenson,et al.  Introduction to Circle Packing: The Theory of Discrete Analytic Functions , 2005 .

[13]  Xianfeng Gu,et al.  A discrete uniformization theorem for polyhedral surfaces II , 2014, Journal of Differential Geometry.

[14]  O. Schramm Square tilings with prescribed combinatorics , 1993 .

[15]  P. Lu,et al.  A note on uniformization of riemann surfaces by ricci flow , 2005, math/0505163.

[16]  M. Roček,et al.  The quantization of Regge calculus , 1984 .

[17]  Richard S. Hamilton,et al.  The Ricci flow on surfaces , 1986 .

[18]  Prem K. Kythe,et al.  Computational Conformal Mapping , 1998 .

[19]  Bennett Chow,et al.  The Ricci flow on the 2-sphere , 1991 .

[20]  Hirotaka Akiyoshi Finiteness of polyhedral decompositions of cusped hyperbolic manifolds obtained by the Epstein-Penner’s method , 2000 .

[21]  F. W. Warner,et al.  Existence and Conformal Deformation of Metrics With Prescribed Gaussian and Scalar Curvatures , 1975 .

[22]  J. Cannon The combinatorial Riemann mapping theorem , 1994 .

[23]  B. Rodin,et al.  The convergence of circle packings to the Riemann mapping , 1987 .

[24]  Ivan Izmestiev,et al.  Hyperbolic cusps with convex polyhedral boundary , 2007, 0708.2666.

[25]  R. Penner The decorated Teichmüller space of punctured surfaces , 1987 .

[26]  U. Pinkall,et al.  Discrete conformal maps and ideal hyperbolic polyhedra , 2010, 1005.2698.

[27]  B. Chow,et al.  COMBINATORIAL RICCI FLOWS ON SURFACES , 2002, math/0211256.

[28]  D. Glickenstein,et al.  Discrete conformal variations and scalar curvature on piecewise flat two and three dimensional manifolds , 2009, 0906.1560.

[29]  Igor Rivin Euclidean Structures on Simplicial Surfaces and Hyperbolic Volume , 1994 .

[30]  Alexander I. Bobenko,et al.  A Discrete Laplace–Beltrami Operator for Simplicial Surfaces , 2005, Discret. Comput. Geom..

[31]  John G. Ratcliffe,et al.  Geometry of Discrete Groups , 2019, Foundations of Hyperbolic Manifolds.

[32]  Ren Guo,et al.  Rigidity of polyhedral surfaces, II , 2006, math/0612714.

[33]  Herbert Edelsbrunner,et al.  Geometry and Topology for Mesh Generation , 2001, Cambridge monographs on applied and computational mathematics.

[34]  Shing-Tung Yau,et al.  Computational Conformal Geometry , 2016 .

[35]  Feng Luo COMBINATORIAL YAMABE FLOW ON SURFACES , 2003 .