Pore-scale flow simulation in anisotropic porous material via fluid-structure coupling

Abstract This paper describes a novel hybrid method for fluid simulation of saturating anisotropic porous material via fluid-structure coupling. Our framework employs particle finite element method (PFEM) that not only adopts Lagrangian scheme to model the motion of freely-moving particles, but also produces the extended Delaunay Tessellation to furnish the governing equations with FEM discretization. We first employ adaptive smoothed particle hydrodynamics (SPH) to simulate porous flow respecting the anisotropic permeability with little cost. Second, the extended Delaunay Tessellation is obtained to solve differential equations for skeletal deformation. Third, a hybrid particle system is adopted to track the surface and topological changes. At the physical level, we introduce dynamic permeability considering skeletal deformation via fluid-structure coupling. At the geometric level, PFEM reduces the computational cost and effectively tracks topological changes. Moreover, our implementation on CUDA improves the performance in high-quality physics-based graphics applications. Consequently, the proposed method realistically reproduces interactions between pore-scale flow and anisotropic porous material.

[1]  Chenfanfu Jiang,et al.  The affine particle-in-cell method , 2015, ACM Trans. Graph..

[2]  M. Blunt Flow in porous media — pore-network models and multiphase flow , 2001 .

[3]  Greg Turk,et al.  Hybrid smoothed particle hydrodynamics , 2011, SCA '11.

[4]  N. Tomozeiu,et al.  Transport Of Water–glycerol Mixtures In Porous Materials Studied With NMR Imaging , 2015 .

[5]  Eugenio Oñate,et al.  A particle finite element method for analysis of industrial forming processes , 2014 .

[6]  Yury Y. Podladchikov,et al.  Coupling changes in densities and porosity to fluid pressure variations in reactive porous fluid flow: Local thermodynamic equilibrium , 2015 .

[7]  B. Adams,et al.  Porous flow in particle-based fluid simulations , 2008, SIGGRAPH 2008.

[8]  Matthias Teschner,et al.  SPH Fluids in Computer Graphics , 2014, Eurographics.

[9]  James F. O'Brien,et al.  Simultaneous coupling of fluids and deformable bodies , 2006, SCA '06.

[10]  Jure Ravnik,et al.  Simulation of 3D flow in porous media by boundary element method , 2011 .

[11]  Chiew-Lan Tai,et al.  MoXi: real-time ink dispersion in absorbent paper , 2005, SIGGRAPH '05.

[12]  Jihun Yu,et al.  Reconstructing surfaces of particle-based fluids using anisotropic kernels , 2010, SCA '10.

[13]  Matthias Teschner,et al.  Versatile rigid-fluid coupling for incompressible SPH , 2012, ACM Trans. Graph..

[14]  Frédéric,et al.  1 Modeling of coupled deformation and permeability evolution during fault reactivation induced by deep underground injection of CO 2 , 2010 .

[15]  Qinjun Kang,et al.  Upscaling pore‐scale reactive transport equations using a multiscale continuum formulation , 2007 .

[16]  LI Pei-chao Mathematical modeling of flow in saturated porous media on account of fluid-structure coupling effect , 2003 .

[17]  Thomas Seelig,et al.  Fracture Mechanics: With an Introduction to Micromechanics , 2006 .

[18]  J. Parlange Porous Media: Fluid Transport and Pore Structure , 1981 .

[19]  Mary F. Wheeler,et al.  Modeling Fractures in a Poro-Elastic Medium , 2014 .

[20]  Li Lang Three-dimensional full coupling numerical simulation of groundwater dewatering and land-subsidence in quaternary loose sediments , 2008 .

[21]  Steven M. Seitz,et al.  Finding paths through the world's photos , 2008, SIGGRAPH 2008.

[22]  Ruben Juanes,et al.  Nonequilibrium effects in models of three-phase flow in porous media , 2008 .

[23]  Eugenio Oñate,et al.  A Lagrangian meshless finite element method applied to fluid-structure interaction problems , 2003 .

[24]  Jeong-Mo Hong,et al.  Bubbles alive , 2008, SIGGRAPH 2008.

[25]  Mark L. SAWLEY,et al.  MODELLING OF FLOW IN POROUS MEDIA AND RESIN TRANSFER MOULDING USING SMOOTHED PARTICLE HYDRODYNAMICS , 1999 .

[26]  Xianfang Song,et al.  Simulation of fully coupled finite element analysis of nonlinear hydraulic properties in land subsidence due to groundwater pumping , 2015, Environmental Earth Sciences.

[27]  William E. Lorensen,et al.  Marching cubes: A high resolution 3D surface construction algorithm , 1987, SIGGRAPH.

[28]  E. W. Washburn The Dynamics of Capillary Flow , 1921 .

[29]  E. Oñate,et al.  The particle finite element method. An overview , 2004 .

[30]  Julie Dorsey,et al.  Advanced material appearance modeling , 2008, SIGGRAPH '08.

[31]  Qunsheng Peng,et al.  Realistic simulation of mixing fluids , 2011, The Visual Computer.

[32]  Angelo Amorosi,et al.  Experimental investigation of the evolution of elastic stiffness anisotropy in a clayey soil , 2014 .

[33]  Herbert Edelsbrunner,et al.  Three-dimensional alpha shapes , 1992, VVS.

[34]  J. Owen,et al.  Adaptive Smoothed Particle Hydrodynamics: Methodology. II. , 1995, astro-ph/9512078.

[35]  Ronald Fedkiw,et al.  Two-Way Coupled SPH and Particle Level Set Fluid Simulation , 2008, IEEE Transactions on Visualization and Computer Graphics.

[36]  Tobias Keller,et al.  Numerical modelling of magma dynamics coupled to tectonic deformation of lithosphere and crust , 2013 .

[37]  Daniel G. Aliaga,et al.  Fast high-resolution appearance editing using superimposed projections , 2012, TOGS.

[38]  Nuttapong Chentanez,et al.  Coupling 3D Eulerian, Heightfield and Particle Methods for Interactive Simulation of Large Scale Liquid Phenomena , 2014, IEEE Transactions on Visualization and Computer Graphics.

[39]  Alexander Khoperskov,et al.  Smoothed-Particle Hydrodynamics Models: Implementation Features on GPUs , 2017, RuSCDays.

[40]  Wei-Chin Lin,et al.  Boundary handling and porous flow for fluid-hair interactions , 2015, Comput. Graph..

[41]  Holly E. Rushmeier,et al.  Inverse bi-scale material design , 2013, ACM Trans. Graph..

[42]  Jessica K. Hodgins,et al.  A point-based method for animating incompressible flow , 2009, SCA '09.

[43]  Guirong Liu,et al.  Adaptive smoothed particle hydrodynamics for high strain hydrodynamics with material strength , 2006 .

[44]  James F. O'Brien,et al.  Adaptive anisotropic remeshing for cloth simulation , 2012, ACM Trans. Graph..

[45]  D. P. Nikan’shin,et al.  Modeling of transfer of particles of different size by a two-phase filtration flow , 2000 .

[46]  Daniel Weiskopf,et al.  Boundary Handling at Cloth–Fluid Contact , 2015, Comput. Graph. Forum.

[47]  Philip Dutré,et al.  Mixing Fluids and Granular Materials , 2009, Comput. Graph. Forum.

[48]  Tsuyoshi Murata,et al.  {m , 1934, ACML.

[49]  Eugenio Oñate,et al.  The particle finite element method: a powerful tool to solve incompressible flows with free‐surfaces and breaking waves , 2004 .

[50]  Eugenio Oñate,et al.  The meshless finite element method , 2003 .

[51]  Guoping Wang,et al.  Anisotropic Kernels for Meshless Elastic Solids , 2011, 2011 12th International Conference on Computer-Aided Design and Computer Graphics.

[52]  Donald M. Anderson,et al.  Imbibition of a liquid droplet on a deformable porous substrate , 2005 .

[53]  Ronald Fedkiw,et al.  Two-way coupling of fluids to rigid and deformable solids and shells , 2008, ACM Trans. Graph..

[54]  Gerhard Gompper,et al.  Smoothed dissipative particle dynamics with angular momentum conservation , 2015, J. Comput. Phys..

[55]  G. V. Bicknell,et al.  On tidal detonation of stars by massive black holes , 1983 .

[56]  Markus H. Gross,et al.  Lagrangian vortex sheets for animating fluids , 2012, ACM Trans. Graph..

[57]  Philip Dutré,et al.  Porous flow in particle-based fluid simulations , 2008, ACM Trans. Graph..

[58]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[59]  Markus H. Gross,et al.  Particle-based fluid simulation for interactive applications , 2003, SCA '03.

[60]  R. Hilfer,et al.  Macroscopic capillarity and hysteresis for flow in porous media. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[61]  Qiang Zhang,et al.  Hybrid particle–grid fluid animation with enhanced details , 2013, The Visual Computer.

[62]  JungHyun Han,et al.  Porous deformable shell simulation with surface water flow and saturation , 2013, Comput. Animat. Virtual Worlds.

[63]  M. Gross,et al.  A multiscale approach to mesh-based surface tension flows , 2010, SIGGRAPH 2010.

[64]  Matthias Teschner,et al.  Eurographics/ Acm Siggraph Symposium on Computer Animation (2007) Weakly Compressible Sph for Free Surface Flows , 2022 .