A unified multi-soft-body dynamic model for underwater soft robots

A unified formulation that accounts for the dynamics of a general class of aquatic multi-body, soft-structured robots is presented. The formulation is based on a Cosserat formalism where the description of the ensemble of geometrical entities, such as shells and beams, gives rise to a multi-soft-body system capable of simulating both manipulation and locomotion. Conceived as an advanced tool for a priori hardware development, n-degree-of-freedom dynamics analysis and control design of underwater, soft, multi-body, vehicles, the model is validated against aquatic locomotion experiments of an octopus-inspired soft unmanned underwater robot. Upon validation, the general applicability of the model is demonstrated by predicting the self-propulsion dynamics of a diverse range of new viable combinations of multi-soft-body aquatic system.

[1]  S. Antman Nonlinear problems of elasticity , 1994 .

[2]  Holger Lang,et al.  Geometrically exact Cosserat rods with Kelvin–Voigt type viscous damping , 2013 .

[3]  Frédéric Boyer,et al.  Macro-continuous computed torque algorithm for a three-dimensional eel-like robot , 2006, IEEE Transactions on Robotics.

[4]  E. Reissner On a one-dimensional theory of finite bending and stretching of elastic plates , 1990 .

[5]  G. Palli Intelligent Robots And Systems , 1993, Proceedings of 1993 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS '93).

[6]  Frédéric Boyer,et al.  Poincaré–Cosserat Equations for the Lighthill Three-dimensional Large Amplitude Elongated Body Theory: Application to Robotics , 2010, J. Nonlinear Sci..

[7]  Matteo Cianchetti,et al.  Dynamic Model of a Multibending Soft Robot Arm Driven by Cables , 2014, IEEE Transactions on Robotics.

[8]  Cagatay Basdogan,et al.  The role of roles: Physical cooperation between humans and robots , 2012, Int. J. Robotics Res..

[9]  Frédéric Boyer,et al.  A Multi-soft-body Dynamic Model for Underwater Soft Robots , 2015, ISRR.

[10]  M. E. Demont,et al.  The mechanics of locomotion in the squid Loligo pealei: locomotory function and unsteady hydrodynamics of the jet and intramantle pressure. , 2000, The Journal of experimental biology.

[11]  A. C. Trembanis,et al.  Automated optimal processing of phase differencing side-scan sonar data using the Most-Probable Angle Algorithm , 2012, 2012 Oceans.

[12]  Francesco Giorgio-Serchi,et al.  Underwater Soft Robotics, the Benefit of Body-Shape Variations in Aquatic Propulsion , 2017 .

[13]  J. M. Selig Geometric Fundamentals of Robotics (Monographs in Computer Science) , 2004 .

[14]  Carrick Detweiler,et al.  AMOUR V: A Hovering Energy Efficient Underwater Robot Capable of Dynamic Payloads , 2010, Int. J. Robotics Res..

[15]  J. M. Selig Geometric Fundamentals of Robotics , 2004, Monographs in Computer Science.

[16]  Richard M. Murray,et al.  A Mathematical Introduction to Robotic Manipulation , 1994 .

[17]  C. Marle,et al.  "Sur une forme nouvelle des ´ equations de la M´ ecanique" , 2013 .

[18]  J. Y. S. Luh,et al.  On-Line Computational Scheme for Mechanical Manipulators , 1980 .

[19]  Frédéric Boyer,et al.  Locomotion and elastodynamics model of an underwater shell-like soft robot , 2015, 2015 IEEE International Conference on Robotics and Automation (ICRA).

[20]  P. W. Likins,et al.  Floating reference frames for flexible spacecraft , 1977 .

[21]  M S Triantafyllou,et al.  Efficiency of fish propulsion , 2014, Bioinspiration & biomimetics.

[22]  Kamran Mohseni,et al.  Pressure and work analysis of unsteady, deformable, axisymmetric, jet producing cavity bodies , 2015, Journal of Fluid Mechanics.

[23]  Franz S. Hover,et al.  Advanced perception, navigation and planning for autonomous in-water ship hull inspection , 2012, Int. J. Robotics Res..

[24]  Cecilia Laschi,et al.  Underwater soft-bodied pulsed-jet thrusters: Actuator modeling and performance profiling , 2016, Int. J. Robotics Res..

[25]  Kamran Mohseni,et al.  Design considerations for an underwater soft-robot inspired from marine invertebrates , 2015, Bioinspiration & biomimetics.

[26]  E. Standen,et al.  Escape manoeuvres in the spiny dogfish (Squalus acanthias) , 2004, Journal of Experimental Biology.

[27]  M Giorelli,et al.  Hybrid parameter identification of a multi-modal underwater soft robot , 2017, Bioinspiration & biomimetics.

[28]  Frédéric Boyer,et al.  Structural Dynamics of a Pulsed-Jet Propulsion System for Underwater Soft Robots , 2015 .

[29]  E. Anderson,et al.  Hydrodynamics of locomotion in the squid Loligo pealei , 2001, Journal of Fluid Mechanics.

[30]  Frédéric Boyer,et al.  Three-dimensional extension of Lighthill's large-amplitude elongated-body theory of fish locomotion , 2011, Journal of Fluid Mechanics.

[31]  P. D. Soden,et al.  A Study in Jet Propulsion: An Analysis of the Motion of the Squid, Loligo Vulgaris , 1972 .

[32]  Mathieu Porez,et al.  Note on the swimming of an elongated body in a non-uniform flow , 2013, Journal of Fluid Mechanics.

[33]  Cecilia Laschi,et al.  Thrust depletion at high pulsation frequencies in underactuated, soft-bodied, pulsed-jet vehicles , 2015, OCEANS 2015 - Genova.

[34]  Jerome Vaganay,et al.  HOVERING AUTONOMOUS UNDERWATER VEHICLE – SYSTEM DESIGN IMPROVEMENTS AND PERFORMANCE EVALUATION RESULTS , 2009 .

[35]  M S Triantafyllou,et al.  A fast-starting mechanical fish that accelerates at 40 m s−2 , 2010, Bioinspiration & biomimetics.

[36]  Jake J. Abbott,et al.  How Should Microrobots Swim? , 2009, ISRR.

[37]  Dimitris P. Tsakiris,et al.  Multi-arm robotic swimming with octopus-inspired compliant web , 2014, 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[38]  F.S. Hover,et al.  Design and projected performance of a flapping foil AUV , 2004, IEEE Journal of Oceanic Engineering.

[39]  Frédéric Boyer,et al.  Multibody system dynamics for bio-inspired locomotion: from geometric structures to computational aspects , 2015, Bioinspiration & biomimetics.

[40]  Mike Fraser,et al.  Building safer robots: Safety driven control , 2012, Int. J. Robotics Res..

[41]  J. Elvander,et al.  ROVs and AUVs in support of marine renewable technologies , 2012, 2012 Oceans.

[42]  J. C. Simo,et al.  On stress resultant geometrically exact shell model. Part I: formulation and optimal parametrization , 1989 .

[43]  F Renda,et al.  Modelling cephalopod-inspired pulsed-jet locomotion for underwater soft robots , 2015, Bioinspiration & biomimetics.

[44]  K.M. Lynch,et al.  Mechanics and control of swimming: a review , 2004, IEEE Journal of Oceanic Engineering.

[45]  J. C. Simo,et al.  A finite strain beam formulation. The three-dimensional dynamic problem. Part I , 1985 .

[46]  D. Primault,et al.  The Poincaré-Chetayev equations and flexible multibody systems , 2005 .

[47]  Krishnamurty Karamcheti,et al.  Principles of ideal-fluid aerodynamics , 1966 .

[48]  Frédéric Boyer,et al.  Poincaré’s Equations for Cosserat Media: Application to Shells , 2017, J. Nonlinear Sci..

[49]  Fumiya Iida,et al.  Deformation in Soft-Matter Robotics: A Categorization and Quantitative Characterization , 2015, IEEE Robotics & Automation Magazine.

[50]  Jianwei Zhang,et al.  On a Bio-inspired Amphibious Robot Capable of Multimodal Motion , 2012, IEEE/ASME Transactions on Mechatronics.

[51]  Perry Y. Li,et al.  Motion Planning and Control of a Swimming Machine , 2004, Proceedings of the 2001 American Control Conference. (Cat. No.01CH37148).

[52]  M. Lighthill Aquatic animal propulsion of high hydromechanical efficiency , 1970, Journal of Fluid Mechanics.

[53]  Daniela Rus,et al.  Autonomous Soft Robotic Fish Capable of Escape Maneuvers Using Fluidic Elastomer Actuators. , 2014, Soft robotics.

[54]  G. D. Weymouth,et al.  Drag cancellation by added-mass pumping , 2016, Journal of Fluid Mechanics.