Quantum-Teleportation-Inspired Algorithm for Sampling Large Random Quantum Circuits.

Quantum teleportation transfers and processes quantum information through quantum entanglement channels. It is one of the most versatile protocols in quantum information science and leads to many remarkable applications, particularly the one-way quantum computing. Here, we show, for the first time, that the concept of teleportation can also be used to facilitate an important classical computing task, sampling random quantum circuits, which is highly relevant to prove the near-term demonstration of quantum computational supremacy. In our method, the classical computation in the physical-qubit state space is converted to simulate teleportation in logical-qubit state space, resulting in a much smaller number of qubits involved in classical computing. We tested this new method on 1D and 2D lattices up to 1000 qubits. This Letter presents a new quantum-inspired classical computing technology and is helpful to design and optimize classically hard quantum sampling experiments.

[1]  Rolando L. La Placa,et al.  How many qubits are needed for quantum computational supremacy? , 2018, Quantum.

[2]  Scott Aaronson,et al.  The computational complexity of linear optics , 2010, STOC '11.

[3]  T. R. Tan,et al.  High-Fidelity Universal Gate Set for ^{9}Be^{+} Ion Qubits. , 2016, Physical review letters.

[4]  H. Neven,et al.  Characterizing quantum supremacy in near-term devices , 2016, Nature Physics.

[5]  N. Linke,et al.  High-Fidelity Quantum Logic Gates Using Trapped-Ion Hyperfine Qubits. , 2015, Physical review letters.

[6]  Yaoyun Shi,et al.  Classical Simulation of Intermediate-Size Quantum Circuits , 2018, 1805.01450.

[7]  R Raussendorf,et al.  A one-way quantum computer. , 2001, Physical review letters.

[8]  R. Barends,et al.  Superconducting quantum circuits at the surface code threshold for fault tolerance , 2014, Nature.

[9]  Scott Aaronson,et al.  Complexity-Theoretic Foundations of Quantum Supremacy Experiments , 2016, CCC.

[10]  John M. Martinis,et al.  Logic gates at the surface code threshold: Superconducting qubits poised for fault-tolerant quantum computing , 2014 .

[11]  Xia Yang,et al.  64-qubit quantum circuit simulation. , 2018, Science bulletin.

[12]  A. Harrow,et al.  Quantum algorithm for linear systems of equations. , 2008, Physical review letters.

[13]  M. Head‐Gordon,et al.  Simulated Quantum Computation of Molecular Energies , 2005, Science.

[14]  Dax Enshan Koh,et al.  Entanglement scaling in quantum advantage benchmarks , 2018, Physical Review A.

[15]  Guangwen Yang,et al.  Quantum Supremacy Circuit Simulation on Sunway TaihuLight , 2018, IEEE Transactions on Parallel and Distributed Systems.

[16]  Lorenza Viola,et al.  Parameters of pseudorandom quantum circuits , 2008, 0808.3758.

[17]  Wei Ge,et al.  The Sunway TaihuLight supercomputer: system and applications , 2016, Science China Information Sciences.

[18]  Igor L. Markov,et al.  Quantum Supremacy Is Both Closer and Farther than It Appears , 2018, ArXiv.

[19]  Igor L. Markov,et al.  Simulating Quantum Computation by Contracting Tensor Networks , 2008, SIAM J. Comput..

[20]  U. Vazirani,et al.  On the complexity and verification of quantum random circuit sampling , 2018, Nature Physics.

[21]  H. Neven,et al.  Simulation of low-depth quantum circuits as complex undirected graphical models , 2017, 1712.05384.

[22]  Nobuyasu Ito,et al.  Massively parallel quantum computer simulator, eleven years later , 2018, Comput. Phys. Commun..

[23]  Charles H. Bennett,et al.  Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. , 1993, Physical review letters.

[24]  J. Gambetta,et al.  Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets , 2017, Nature.

[25]  John Preskill,et al.  Quantum Computing in the NISQ era and beyond , 2018, Quantum.

[26]  Raphaël Clifford,et al.  Classical boson sampling algorithms with superior performance to near-term experiments , 2017, Nature Physics.

[27]  Christopher T. Chubb,et al.  Hand-waving and interpretive dance: an introductory course on tensor networks , 2016, 1603.03039.

[28]  H Neven,et al.  A blueprint for demonstrating quantum supremacy with superconducting qubits , 2017, Science.

[29]  Isaac L. Chuang,et al.  Quantum Computation and Quantum Information (10th Anniversary edition) , 2011 .

[30]  Rupak Biswas,et al.  A flexible high-performance simulator for the verification and benchmarking of quantum circuits implemented on real hardware , 2018 .

[31]  Aram W. Harrow,et al.  Quantum computational supremacy , 2017, Nature.

[32]  John A. Gunnels,et al.  Breaking the 49-Qubit Barrier in the Simulation of Quantum Circuits , 2017, 1710.05867.

[33]  Seth Lloyd,et al.  Pseudo-Random Unitary Operators for Quantum Information Processing , 2003, Science.