Thermal properties of the metastable supersaturated vapor of the Lennard-Jones fluid.

p, rho, T data of the supersaturated vapor of the Lennard-Jones fluid are obtained by molecular dynamics simulations. The metastable state points are identified before a phase separation takes place. An estimation of the location of the spinodal is given. The results are compared to two theoretically based equations of state and one empirical equation of state which was parametrized also taking into account metastable state points. The pressure obtained by simulation is found to be lower than that from both theoretically based equations of state, which do not account for the inhomogeneous density distribution of the supersaturated vapor.

[1]  Daan Frenkel,et al.  Numerical calculation of the rate of homogeneous gas–liquid nucleation in a Lennard-Jones system , 1999 .

[2]  Max Volmer,et al.  Kinetik der Phasenbildung , 1939 .

[3]  Jadran Vrabec,et al.  Vapour liquid equilibria of the Lennard-Jones fluid from the NpT plus test particle method , 1992 .

[4]  V. Baidakov,et al.  Metastable States in Liquid–Gas Phase Transition. Simulation by the Method of Molecular Dynamics , 2003 .

[5]  Hans Hasse,et al.  A Set of Molecular Models for Symmetric Quadrupolar Fluids , 2001 .

[6]  M. Klein,et al.  Nosé-Hoover chains : the canonical ensemble via continuous dynamics , 1992 .

[7]  M. Klein,et al.  Constant pressure molecular dynamics algorithms , 1994 .

[8]  A. Dillmann,et al.  A refined droplet approach to the problem of homogeneous nucleation from the vapor phase , 1991 .

[9]  Daan Frenkel,et al.  Computer simulation study of gas–liquid nucleation in a Lennard-Jones system , 1998 .

[10]  K. Laasonen,et al.  Molecular dynamics simulations of gas-liquid nucleation of Lennard-Jones fluid , 2000 .

[11]  Kenji Yasuoka,et al.  Molecular dynamics of homogeneous nucleation in the vapor phase. I. Lennard-Jones fluid , 1998 .

[12]  S. Girshick,et al.  Kinetic nucleation theory: A new expression for the rate of homogeneous nucleation from an ideal supersaturated vapor , 1990 .

[13]  V. Baidakov,et al.  Equation of State for Lennard-Jones Fluid , 2003 .

[14]  A. Laaksonen,et al.  Interfacial curvature free energy, the Kelvin relation, and vapor–liquid nucleation rate , 1997 .

[15]  Dimo Kashchiev,et al.  Nucleation : basic theory with applications , 2000 .

[16]  J. Banavar,et al.  Computer Simulation of Liquids , 1988 .

[17]  Ivo Nezbeda,et al.  The Lennard-Jones fluid: an accurate analytic and theoretically-based equation of state , 1994 .

[18]  J. Schmelzer Kinetics of condensation of gases: A new approach , 2001 .

[19]  D. H. Tsai The virial theorem and stress calculation in molecular dynamics , 1979 .

[20]  R. Zahoransky,et al.  Homogeneous nucleation of argon in an unsteady hypersonic flow field , 1999 .

[21]  D. Oxtoby,et al.  Nonclassical nucleation theory for the gas-liquid transition , 1988 .

[22]  D. Zhukhovitskii MOLECULAR DYNAMICS STUDY OF CLUSTER EVOLUTION IN SUPERSATURATED VAPOR , 1995 .

[23]  Hoover,et al.  Canonical dynamics: Equilibrium phase-space distributions. , 1985, Physical review. A, General physics.

[24]  R. Becker,et al.  Kinetische Behandlung der Keimbildung in übersättigten Dämpfen , 1935 .

[25]  Alan V. Oppenheim,et al.  Discrete-Time Signal Pro-cessing , 1989 .

[26]  J. Katz,et al.  Role of the Model Dependent Translational Volume Scale in the Classical Theory of Nucleation , 1998 .