Optical Coherence Tomography: Future Trends for Imaging in Glaucoma

ABSTRACT Optical coherence tomography captures a major role in clinical assessment in eye care. Innovative hardware and software improvements in the technology would further enhance its usefulness. In this review, we present several promising initiatives currently in development or early phase of assessment that we expect to have a future impact on optical coherence tomography.

[1]  Nicholas G Strouthidis,et al.  Detection of optic nerve head neural canal opening within histomorphometric and spectral domain optical coherence tomography data sets. , 2009, Investigative ophthalmology & visual science.

[2]  Christopher Kai-shun Leung,et al.  Measurement of Photoreceptor Layer in Glaucoma: A Spectral-Domain Optical Coherence Tomography Study , 2011, Journal of ophthalmology.

[3]  Anthony J Correnti,et al.  Optical coherence tomography measurement of macular and nerve fiber layer thickness in normal and glaucomatous human eyes. , 2003, Ophthalmology.

[4]  J. Duker,et al.  Imaging of macular diseases with optical coherence tomography. , 1995, Ophthalmology.

[5]  Bo Wang,et al.  The OCT penlight: in-situ image guidance for microsurgery , 2010, Medical Imaging.

[6]  Maciej Wojtkowski,et al.  Noninvasive volumetric imaging and morphometry of the rodent retina with high-speed, ultrahigh-resolution optical coherence tomography. , 2006, Investigative ophthalmology & visual science.

[7]  Barry Cense,et al.  In vivo dynamic human retinal blood flow imaging using ultra-high-speed spectral domain optical coherence tomography. , 2003, Optics express.

[8]  C. Grimm,et al.  Molecular ophthalmology: an update on animal models for retinal degenerations and dystrophies , 2000, The British journal of ophthalmology.

[9]  T H Roderick,et al.  Essential iris atrophy, pigment dispersion, and glaucoma in DBA/2J mice. , 1998, Investigative ophthalmology & visual science.

[10]  Sunil K Srivastava,et al.  Intraoperative spectral-domain optical coherence tomography during complex retinal detachment repair. , 2011, Ophthalmic surgery, lasers & imaging : the official journal of the International Society for Imaging in the Eye.

[11]  Michael G. Anderson,et al.  Inherited glaucoma in DBA/2J mice: pertinent disease features for studying the neurodegeneration. , 2005, Visual neuroscience.

[12]  Robert N Weinreb,et al.  Evaluation of retinal nerve fiber layer progression in glaucoma: a comparison between spectral-domain and time-domain optical coherence tomography. , 2011, Ophthalmology.

[13]  J. Duker,et al.  Three-dimensional retinal imaging with high-speed ultrahigh-resolution optical coherence tomography. , 2005, Ophthalmology.

[14]  J. Izatt,et al.  Real-time optical coherence tomography of the anterior segment at 1310 nm. , 2001, Archives of ophthalmology.

[15]  E Reichel,et al.  Quantitative assessment of macular edema with optical coherence tomography. , 1995, Archives of ophthalmology.

[16]  Hiroshi Ishikawa,et al.  Macular segmentation with optical coherence tomography. , 2005, Investigative ophthalmology & visual science.

[17]  T. Yatagai,et al.  In vivo high-contrast imaging of deep posterior eye by 1-microm swept source optical coherence tomography and scattering optical coherence angiography. , 2007, Optics express.

[18]  Joel S Schuman,et al.  Spectral domain optical coherence tomography for glaucoma (an AOS thesis). , 2008, Transactions of the American Ophthalmological Society.

[19]  Robin Ray,et al.  Intraoperative microscope-mounted spectral domain optical coherence tomography for evaluation of retinal anatomy during macular surgery. , 2011, Ophthalmology.

[20]  Wolfgang Wieser,et al.  Multi-megahertz OCT: High quality 3D imaging at 20 million A-scans and 4.5 GVoxels per second. , 2010, Optics express.

[21]  F. Medeiros,et al.  Reproducibility of RTVue retinal nerve fiber layer thickness and optic disc measurements and agreement with Stratus optical coherence tomography measurements. , 2009, American journal of ophthalmology.

[22]  S. Yun,et al.  In vivo optical frequency domain imaging of human retina and choroid. , 2006, Optics express.

[23]  Shuliang Jiao,et al.  Retinal tumor imaging and volume quantification in mouse model using spectral-domain optical coherence tomography. , 2009, Optics express.

[24]  L. A. Paunescu,et al.  Ultrahigh-resolution optical coherence tomography in glaucoma. , 2005, Ophthalmology.

[25]  Teresa C. Chen,et al.  In vivo dynamic human retinal blood flow imaging using ultra-high-speed spectral domain optical Doppler tomography , 2003 .

[26]  J. Fujimoto,et al.  Optical Coherence Tomography , 1991, LEOS '92 Conference Proceedings.

[27]  Ki Ho Park,et al.  Diagnostic ability of optical coherence tomography with a normative database to detect localized retinal nerve fiber layer defects. , 2005, Ophthalmology.

[28]  A. Fercher,et al.  In vivo human retinal imaging by Fourier domain optical coherence tomography. , 2002, Journal of biomedical optics.

[29]  D. Jackson,et al.  En face optical coherence tomography: a new method to analyse structural changes of the optic nerve head in rat glaucoma , 2005, British Journal of Ophthalmology.

[30]  Juan Xu,et al.  3D optical coherence tomography super pixel with machine classifier analysis for glaucoma detection , 2011, 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society.

[31]  Y. Kurimoto,et al.  Restoration of the photoreceptor outer segment and visual outcomes after macular hole closure: spectral-domain optical coherence tomography analysis , 2011, Graefe's Archive for Clinical and Experimental Ophthalmology.

[32]  Wolfgang Drexler,et al.  State-of-the-art retinal optical coherence tomography , 2008, Progress in Retinal and Eye Research.

[33]  Hiroshi Ishikawa,et al.  Reproducibility of spectral-domain optical coherence tomography total retinal thickness measurements in mice. , 2010, Investigative ophthalmology & visual science.

[34]  Hiroshi Ishikawa,et al.  Optic nerve crush mice followed longitudinally with spectral domain optical coherence tomography. , 2011, Investigative ophthalmology & visual science.

[35]  J. Fujimoto,et al.  Enhanced visualization of macular pathology with the use of ultrahigh-resolution optical coherence tomography. , 2003, Archives of ophthalmology.

[36]  William J Feuer,et al.  Sensitivity and specificity of time-domain versus spectral-domain optical coherence tomography in diagnosing early to moderate glaucoma. , 2009, Ophthalmology.

[37]  Hiroshi Ishikawa,et al.  Three-dimensional optical coherence tomography (3D-OCT) image enhancement with segmentation-free contour modeling C-mode. , 2009, Investigative ophthalmology & visual science.

[38]  Barry Cense,et al.  Volumetric retinal imaging with ultrahigh-resolution spectral-domain optical coherence tomography and adaptive optics using two broadband light sources. , 2009, Optics express.

[39]  Francesco Bandello,et al.  Repeatability and reproducibility of fast macular thickness mapping with stratus optical coherence tomography. , 2005, Archives of ophthalmology.

[40]  E A Swanson,et al.  Micrometer-scale resolution imaging of the anterior eye in vivo with optical coherence tomography. , 1994, Archives of ophthalmology.

[41]  J. Duker,et al.  Ultrahigh speed 1050nm swept source/Fourier domain OCT retinal and anterior segment imaging at 100,000 to 400,000 axial scans per second. , 2010, Optics express.

[42]  J. Fujimoto,et al.  Optical coherence tomography: A new tool for glaucoma diagnosis , 1995, Current opinion in ophthalmology.

[43]  J. Fujimoto,et al.  Reproducibility of nerve fiber layer thickness measurements using optical coherence tomography. , 1996, Ophthalmology.

[44]  W. Drexler,et al.  Three-dimensional 1060-nm OCT: choroidal thickness maps in normal subjects and improved posterior segment visualization in cataract patients. , 2010, Investigative ophthalmology & visual science.

[45]  G. Wollstein,et al.  Visualization of 3-D high speed ultrahigh resolution optical coherence tomographic data identifies structures visible in 2D frames. , 2009, Optics express.

[46]  S. Ohkubo,et al.  In vivo quantitative evaluation of the rat retinal nerve fiber layer with optical coherence tomography. , 2009, Investigative ophthalmology & visual science.

[47]  G. Wollstein,et al.  Reproducibility of nerve fiber thickness, macular thickness, and optic nerve head measurements using StratusOCT. , 2004, Investigative ophthalmology & visual science.

[48]  F. Medeiros,et al.  Detection of glaucoma progression with stratus OCT retinal nerve fiber layer, optic nerve head, and macular thickness measurements. , 2009, Investigative ophthalmology & visual science.

[49]  W. Tatton,et al.  Retinal damage after 3 to 4 months of elevated intraocular pressure in a rat glaucoma model. , 2000, Investigative ophthalmology & visual science.

[50]  Donald T. Miller,et al.  Adaptive optics parallel spectral domain optical coherence tomography for imaging the living retina. , 2005, Optics express.

[51]  Wing-Ho Yung,et al.  Comparison of macular and peripapillary measurements for the detection of glaucoma: an optical coherence tomography study. , 2005, Ophthalmology.

[52]  A. Hackam,et al.  In vivo three-dimensional high-resolution imaging of rodent retina with spectral-domain optical coherence tomography. , 2007, Investigative ophthalmology & visual science.

[53]  T. Yatagai,et al.  Three-dimensional and high-speed swept-source optical coherence tomography for in vivo investigation of human anterior eye segments. , 2005, Optics express.

[54]  F. Medeiros,et al.  Evaluation of retinal nerve fiber layer, optic nerve head, and macular thickness measurements for glaucoma detection using optical coherence tomography. , 2005, American journal of ophthalmology.

[55]  E Reichel,et al.  Optical coherence tomography of central serous chorioretinopathy. , 1995, American journal of ophthalmology.

[56]  James M. Rehg,et al.  Computerized Macular Pathology Diagnosis in Spectral Domain Optical Coherence Tomography Scans Based on Multiscale Texture and Shape Features , 2022 .

[57]  James M. Rehg,et al.  Automated macular pathology diagnosis in retinal OCT images using multi-scale spatial pyramid and local binary patterns in texture and shape encoding , 2011, Medical Image Anal..

[58]  N. Strouthidis,et al.  Longitudinal change detected by spectral domain optical coherence tomography in the optic nerve head and peripapillary retina in experimental glaucoma. , 2011, Investigative ophthalmology & visual science.

[59]  R. Zawadzki,et al.  Real-time assessment of retinal blood flow with ultrafast acquisition by color Doppler Fourier domain optical coherence tomography. , 2003, Optics express.

[60]  Iwona Gorczynska,et al.  Anterior segment imaging with Spectral OCT system using a high-speed CMOS camera. , 2009, Optics express.

[61]  C. Kaufmann,et al.  Use of intraoperative fourier-domain anterior segment optical coherence tomography during descemet stripping endothelial keratoplasty. , 2010, American journal of ophthalmology.

[62]  Masanori Hangai,et al.  Spectral-domain optical coherence tomography with multiple B-scan averaging for enhanced imaging of retinal diseases. , 2008, Ophthalmology.

[63]  Steven M. Jones,et al.  Adaptive-optics optical coherence tomography for high-resolution and high-speed 3 D retinal in vivo imaging , 2005 .

[64]  L. Zangwill,et al.  Detecting early glaucoma by assessment of retinal nerve fiber layer thickness and visual function. , 2001, Investigative ophthalmology & visual science.

[65]  Toyohiko Yatagai,et al.  Visualization of sub-retinal pigment epithelium morphologies of exudative macular diseases by high-penetration optical coherence tomography. , 2009, Investigative ophthalmology & visual science.

[66]  Robert J Zawadzki,et al.  Adaptive optics-optical coherence tomography: optimizing visualization of microscopic retinal structures in three dimensions. , 2007, Journal of the Optical Society of America. A, Optics, image science, and vision.

[67]  Aizhu Tao,et al.  Intraoperative use of three-dimensional spectral-domain optical coherence tomography. , 2010, Ophthalmic surgery, lasers & imaging : the official journal of the International Society for Imaging in the Eye.

[68]  J. Fujimoto,et al.  Optical coherence tomography of the human retina. , 1995, Archives of ophthalmology.

[69]  Hiroshi Ishikawa,et al.  Comparison of three optical coherence tomography scanning areas for detection of glaucomatous damage. , 2005, American journal of ophthalmology.

[70]  Bernd Hamann,et al.  Cellular resolution volumetric in vivo retinal imaging with adaptive optics-optical coherence tomography. , 2009, Optics express.

[71]  G. Ripandelli,et al.  Optical coherence tomography. , 1998, Seminars in ophthalmology.

[72]  Iwona Gorczynska,et al.  Ultrahigh-speed optical coherence tomography for three-dimensional and en face imaging of the retina and optic nerve head. , 2008, Investigative ophthalmology & visual science.

[73]  Shu Liu,et al.  Evaluation of retinal nerve fiber layer progression in glaucoma: a study on optical coherence tomography guided progression analysis. , 2010, Investigative ophthalmology & visual science.

[74]  Akira Arakawa,et al.  Spectral-domain optical coherence tomography images of inner/outer segment junctions and macular hole surgery outcomes , 2009, Graefe's Archive for Clinical and Experimental Ophthalmology.

[75]  W. Drexler,et al.  Three-dimensional optical coherence tomography at 1050 nm versus 800 nm in retinal pathologies: enhanced performance and choroidal penetration in cataract patients. , 2007, Journal of biomedical optics.

[76]  Joseph A Izatt,et al.  Pilot study of optical coherence tomography measurement of retinal blood flow in retinal and optic nerve diseases. , 2011, Investigative ophthalmology & visual science.

[77]  G. Wollstein,et al.  Optical coherence tomography longitudinal evaluation of retinal nerve fiber layer thickness in glaucoma. , 2005, Archives of ophthalmology.

[78]  Reginald Birngruber,et al.  Intraoperative 2-dimensional optical coherence tomography as a new tool for anterior segment surgery. , 2005, Archives of ophthalmology.

[79]  Theo Lasser,et al.  Vectorial reconstruction of retinal blood flow in three dimensions measured with high resolution resonant Doppler Fourier domain optical coherence tomography. , 2007, Journal of biomedical optics.

[80]  P. Hossain,et al.  Recent advances in ophthalmic anterior segment imaging: a new era for ophthalmic diagnosis? , 2007, British Journal of Ophthalmology.

[81]  Mei Chen,et al.  Correcting Motion Artifacts in Retinal Spectral Domain Optical Coherence Tomography via Image Registration , 2009, MICCAI.

[82]  Joseph A Izatt,et al.  Intraoperative spectral domain optical coherence tomography for vitreoretinal surgery. , 2010, Optics letters.

[83]  J. Duker,et al.  Optical coherence tomography of age-related macular degeneration and choroidal neovascularization. , 1996, Ophthalmology.

[84]  M. Larsen,et al.  Enhanced optical coherence tomography imaging by multiple scan averaging , 2005, British Journal of Ophthalmology.

[85]  James G. Fujimoto,et al.  Retinal nerve fibre layer thickness measurement reproducibility improved with spectral domain optical coherence tomography , 2009, British Journal of Ophthalmology.

[86]  Leopold Schmetterer,et al.  Bidirectional Doppler Fourier-domain optical coherence tomography for measurement of absolute flow velocities in human retinal vessels. , 2008, Optics letters.

[87]  Changhuei Yang,et al.  Sensitivity advantage of swept source and Fourier domain optical coherence tomography. , 2003, Optics express.

[88]  W. Drexler,et al.  Adaptive optics optical coherence tomography at 120,000 depth scans/s for non-invasive cellular phenotyping of the living human retina. , 2009, Optics express.

[89]  J. Izatt,et al.  Retinal blood flow measurement by circumpapillary Fourier domain Doppler optical coherence tomography. , 2008, Journal of biomedical optics.

[90]  L. Zangwill,et al.  Reproducibility of nerve fiber layer thickness measurements by use of optical coherence tomography. , 2000, Ophthalmology.

[91]  Barry Cense,et al.  Imaging retinal capillaries using ultrahigh-resolution optical coherence tomography and adaptive optics. , 2011, Investigative ophthalmology & visual science.

[92]  F. Medeiros,et al.  Comparison of the GDx VCC scanning laser polarimeter, HRT II confocal scanning laser ophthalmoscope, and stratus OCT optical coherence tomograph for the detection of glaucoma. , 2004, Archives of ophthalmology.

[93]  Maciej Wojtkowski,et al.  High-definition and 3-dimensional imaging of macular pathologies with high-speed ultrahigh-resolution optical coherence tomography. , 2006, Ophthalmology.

[94]  Atsushi Hayashi,et al.  Intraoperative Changes in Idiopathic Macular Holes by Spectral-Domain Optical Coherence Tomography , 2011, Case Reports in Ophthalmology.

[95]  W. Drexler,et al.  Impact of enhanced resolution, speed and penetration on three-dimensional retinal optical coherence tomography. , 2009, Optics express.

[96]  M L Wolbarsht,et al.  Melanin, a unique biological absorber. , 1981, Applied optics.

[97]  Juan Xu,et al.  3D OCT eye movement correction based on particle filtering , 2010, 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology.

[98]  David Huang,et al.  Retinal blood flow detection in diabetic patients by Doppler Fourier domain optical coherence tomography. , 2009, Optics express.

[99]  Robert N Weinreb,et al.  Spectral domain-optical coherence tomography to detect localized retinal nerve fiber layer defects in glaucomatous eyes. , 2009, Optics express.

[100]  Z. Chen,et al.  [Optical coherence tomography of macular holes]. , 1999, [Zhonghua yan ke za zhi] Chinese journal of ophthalmology.

[101]  R S Harwerth,et al.  Ganglion cell losses underlying visual field defects from experimental glaucoma. , 1999, Investigative ophthalmology & visual science.

[102]  J. Fujimoto,et al.  Ultrahigh speed spectral / Fourier domain OCT ophthalmic imaging at 70,000 to 312,500 axial scans per second. , 2008, Optics express.