Collaborative data analysis with smart tangible devices

We present a tangible approach for exploring and comparing multi-dimensional data points collaboratively by combining Sifteo Cubes with glyph visualizations. Various interaction techniques like touching, shaking, moving or rotating the displays support the user in the analysis. Context dependent glyph-like visualization techniques make best use of the available screen space and cube arrangements. As a first proof of concept we apply our approach to real multi-dimensional datasets and show with a coherent use case how our techniques can facilitate the exploration and comparison of data points. Finally, further research directions are shown when combining Sifteo Cubes with glyphs and additional context information provided by multi-touch tables.

[1]  M. Sheelagh T. Carpendale,et al.  Collaborative coupling over tabletop displays , 2006, CHI.

[2]  H. P. Friedman,et al.  The surgical implications of physiologic patterns in myocardial infarction shock. , 1972, Surgery.

[3]  Jeff Beddow,et al.  Shape coding of multidimensional data on a microcomputer display , 1990, Proceedings of the First IEEE Conference on Visualization: Visualization `90.

[4]  Emily Sun,et al.  Sifteo cubes , 2012, CHI Extended Abstracts.

[5]  Min Chen,et al.  Evaluating the impact of task demands and block resolution on the effectiveness of pixel-based visualization , 2010, IEEE Transactions on Visualization and Computer Graphics.

[6]  Penny Rheingans,et al.  Visualizing Diversity and Depth over a Set of Objects , 2007, IEEE Computer Graphics and Applications.

[7]  Daniel A. Keim,et al.  Literature Fingerprinting: A New Method for Visual Literary Analysis , 2007, 2007 IEEE Symposium on Visual Analytics Science and Technology.

[8]  David Kirsh,et al.  Thinking with external representations , 2010, AI & SOCIETY.

[9]  Orit Shaer,et al.  The tangible video editor: collaborative video editing with active tokens , 2007, Tangible and Embedded Interaction.

[10]  Gösta Ekman,et al.  PSYCHOPHYSICAL RELATIONS IN VISUAL PERCEPTION OF LENGTH, AREA AND VOLUME , 1961 .

[11]  Orit Shaer,et al.  Reality-based interaction: a framework for post-WIMP interfaces , 2008, CHI.

[12]  Anne E. Trefethen,et al.  Rule‐based Visual Mappings – with a Case Study on Poetry Visualization , 2013, Comput. Graph. Forum.

[13]  E. Anderson A Semigraphical Method for the Analysis of Complex Problems , 1960 .

[14]  Matthew O. Ward,et al.  Multivariate Data Glyphs: Principles and Practice , 2008 .

[15]  Hong Zhou,et al.  Visual Analysis of Set Relations in a Graph , 2013, Comput. Graph. Forum.

[16]  Ulrik Brandes,et al.  Gestaltlines , 2013, Comput. Graph. Forum.

[17]  Edward R. Tufte,et al.  Envisioning Information , 1990 .

[18]  Beat Kleiner,et al.  Graphical Methods for Data Analysis , 1983 .

[19]  Johannes Fuchs,et al.  ClockMap: Enhancing Circular Treemaps with Temporal Glyphs for Time-Series Data , 2012, EuroVis.

[20]  Jean-Daniel Fekete,et al.  Stackables: combining tangibles for faceted browsing , 2012, AVI.

[21]  Nathan Yau,et al.  Data Points: Visualization That Means Something , 2013 .

[22]  Petra Isenberg,et al.  Evaluation of alternative glyph designs for time series data in a small multiple setting , 2013, CHI.

[23]  Min Chen,et al.  Glyph sorting: Interactive visualization for multi-dimensional data , 2013, Inf. Vis..

[24]  Min Chen,et al.  Glyph-based Visualization: Foundations, Design Guidelines, Techniques and Applications , 2013, Eurographics.

[25]  Colin Ware,et al.  Information Visualization: Perception for Design , 2000 .

[26]  Herman Chernoff,et al.  The Use of Faces to Represent Points in k- Dimensional Space Graphically , 1973 .

[27]  W. Cleveland,et al.  Graphical Perception: Theory, Experimentation, and Application to the Development of Graphical Methods , 1984 .

[28]  Johannes Fuchs,et al.  Monitoring large IP spaces with ClockView , 2011, VizSec '11.

[29]  R. H. Stumpf,et al.  Graphical exploratory data analysis , 1986 .

[30]  Sriram Subramanian,et al.  Talking about tactile experiences , 2013, CHI.

[31]  Gennady L. Andrienko,et al.  Exploratory analysis of spatial and temporal data - a systematic approach , 2005 .

[32]  W. Hays Semiology of Graphics: Diagrams Networks Maps. , 1985 .

[33]  Jan O. Borchers,et al.  Madgets: actuating widgets on interactive tabletops , 2010, UIST.

[34]  Pattie Maes,et al.  Siftables: towards sensor network user interfaces , 2007, TEI.

[35]  Heidrun Schumann,et al.  Tangible views for information visualization , 2010, ITS '10.

[36]  J. Gower,et al.  Methods for statistical data analysis of multivariate observations , 1977, A Wiley publication in applied statistics.

[37]  Georges G. Grinstein,et al.  Iconographic Displays For Visualizing Multidimensional Data , 1988, Proceedings of the 1988 IEEE International Conference on Systems, Man, and Cybernetics.

[38]  Olivier Thonnard,et al.  VisTracer: a visual analytics tool to investigate routing anomalies in traceroutes , 2012, VizSec '12.

[39]  Juan E. Mezzich,et al.  A COMPARISON OF GRAPHICAL REPRESENTATIONS OF MULTIDIMENSIONAL PSYCHIATRIC DIAGNOSTIC DATA , 1978 .

[40]  Hiroshi Ishii,et al.  Bricks: laying the foundations for graspable user interfaces , 1995, CHI '95.

[41]  J. Hartigan Printer graphics for clustering , 1975 .

[42]  Orit Shaer,et al.  The Tangible Video Editor : Designing for Collaboration , 2007 .

[43]  Daniel A. Keim,et al.  ClustNails: Visual Analysis of Subspace Clusters , 2012 .

[44]  Haim Levkowitz,et al.  Color icons-merging color and texture perception for integrated visualization of multiple parameters , 1991, Proceeding Visualization '91.

[45]  Stephen G. Eick,et al.  Information Rich Glyphs for Software Management Data , 1998, IEEE Computer Graphics and Applications.