Diagnosability in concurrent probabilistic systems

Diagnosability is a key attribute of systems to enable the detection of failure events by partial observations. This paper addresses the diagnosability in concurrent probabilistic systems. Four different notions (L-, P-, A-, and AA-diagnosability) are characterised by formulas of a logic of knowledge, time and probability. Also, we investigate the computational complexities of verifying them: the L-diagnosability is NL-complete, the A-diagnosability is PTIME-complete, and the P-diagnosability is in PSPACE.

[1]  Moshe Y. Vardi Automatic verification of probabilistic concurrent finite state programs , 1985, 26th Annual Symposium on Foundations of Computer Science (sfcs 1985).

[2]  Ron van der Meyden,et al.  Model Checking Knowledge and Time in Systems with Perfect Recall (Extended Abstract) , 1999, FSTTCS.

[3]  Raja Sengupta,et al.  Diagnosability of discrete-event systems , 1995, IEEE Trans. Autom. Control..

[4]  Shengbing Jiang,et al.  A polynomial algorithm for testing diagnosability of discrete-event systems , 2001, IEEE Trans. Autom. Control..

[5]  Bengt Jonsson,et al.  A logic for reasoning about time and reliability , 1990, Formal Aspects of Computing.

[6]  Wojciech Rytter,et al.  Efficient parallel algorithms , 1988 .

[7]  Demosthenis Teneketzis,et al.  Diagnosability of stochastic discrete-event systems , 2005, IEEE Transactions on Automatic Control.

[8]  Ronald Fagin,et al.  Reasoning about knowledge , 1995 .

[9]  Christel Baier,et al.  Probabilistic ω-automata , 2012, JACM.

[10]  Xiaowei Huang,et al.  Bounded planning for strategic goals with incomplete information and perfect recall , 2013, AAMAS.

[11]  Jussi Rintanen Diagnosers and Diagnosability of Succinct Transition Systems , 2007, IJCAI.

[12]  Anne Condon,et al.  On the undecidability of probabilistic planning and related stochastic optimization problems , 2003, Artif. Intell..

[13]  Franco Raimondi,et al.  Model checking multi-agent systems , 2006 .

[14]  Robert E. Tarjan,et al.  Depth-First Search and Linear Graph Algorithms , 1972, SIAM J. Comput..

[15]  Hugo Gimbert,et al.  Probabilistic Automata on Finite Words: Decidable and Undecidable Problems , 2010, ICALP.

[16]  Kaile Su,et al.  Probabilistic Alternating-Time Temporal Logic of Incomplete Information and Synchronous Perfect Recall , 2012, AAAI.

[17]  Ron van der Meyden,et al.  Model Checking Knowledge and Linear Time: PSPACE Cases , 2007, LFCS.

[18]  P. Pandurang Nayak,et al.  A Model-Based Approach to Reactive Self-Configuring Systems , 1996, AAAI/IAAI, Vol. 2.

[19]  Azaria Paz,et al.  Introduction to probabilistic automata (Computer science and applied mathematics) , 1971 .

[20]  Cheng Luo,et al.  Symbolic model checking of probabilistic knowledge , 2011, TARK XIII.

[21]  Krishna R. Pattipati,et al.  Multi-signal flow graphs: a novel approach for system testability analysis and fault diagnosis , 1994 .

[22]  Azaria Paz,et al.  Probabilistic automata , 2003 .

[23]  Yongming Li,et al.  A polynomial algorithm for testing diagnosability of stochastic discrete event systems , 2011, 2011 8th Asian Control Conference (ASCC).