Towards sustainability in water-energy nexus: Ocean energy for seawater desalination

[1]  Mario Prost System , 2019, Concepts for International Law.

[2]  Chang-Kyu Rheem,et al.  Wave energy device and breakwater integration: A review , 2017 .

[3]  Anderson Rodrigo de Queiroz,et al.  The economics of electricity generation from Gulf Stream currents , 2017 .

[4]  Thomas M. Missimer,et al.  Environmental issues in seawater reverse osmosis desalination: Intakes and outfalls , 2017 .

[5]  Giorgio Micale,et al.  Performance of the first reverse electrodialysis pilot plant for power production from saline waters and concentrated brines , 2016 .

[6]  Veera Gnaneswar Gude,et al.  Desalination and sustainability - An appraisal and current perspective. , 2016, Water research.

[7]  Akshay Deshmukh,et al.  Pressure-retarded osmosis for power generation from salinity gradients: is it viable? , 2016 .

[8]  Hyeon-Ju Kim,et al.  Dual-use open cycle ocean thermal energy conversion (OC-OTEC) using multiple condensers for adjustable power generation and seawater desalination , 2016 .

[9]  Andrew G. Livingston,et al.  Energy consumption for desalination — A comparison of forward osmosis with reverse osmosis, and the potential for perfect membranes , 2016 .

[10]  J S Vrouwenvelder,et al.  Life cycle cost of a hybrid forward osmosis - low pressure reverse osmosis system for seawater desalination and wastewater recovery. , 2016, Water research.

[11]  Ramato Ashu Tufa,et al.  Membrane Distillation and Reverse Electrodialysis for Near-Zero Liquid Discharge and low energy seawater desalination , 2015 .

[12]  Aaron D. Wilson,et al.  Energy requirements of the switchable polarity solvent forward osmosis (SPS-FO) water purification process , 2015 .

[13]  Andreas Uihlein,et al.  Ocean energy development in Europe: Current status and future perspectives , 2015 .

[14]  Asif Kabir,et al.  An assessment of available ocean current hydrokinetic energy near the North Carolina shore , 2015 .

[15]  Jian Zuo,et al.  Hybrid pressure retarded osmosis–membrane distillation (PRO–MD) process for osmotic power and clean water generation , 2015 .

[16]  Yang Wang,et al.  Stand-alone seawater RO (reverse osmosis) desalination powered by PV (photovoltaic) and PRO (pressure retarded osmosis) , 2015 .

[17]  D. Lockwood Thirsty California Turns to Sea and Sewer , 2015, ACS central science.

[18]  Ho Kyong Shon,et al.  Pressure retarded osmosis (PRO) for integrating seawater desalination and wastewater reclamation: Energy consumption and fouling , 2015 .

[19]  Kilsung Kwon,et al.  Brine recovery using reverse electrodialysis in membrane-based desalination processes , 2015 .

[20]  A. Kim,et al.  Perspective of membrane distillation applied to ocean thermal energy conversion , 2015 .

[21]  Daniel Anastasio,et al.  Impact of temperature on power density in closed-loop pressure retarded osmosis for grid storage , 2015 .

[22]  Noreddine Ghaffour,et al.  Renewable energy-driven desalination technologies: A comprehensive review on challenges and potential applications of integrated systems , 2015 .

[23]  Jay R. Werber,et al.  Forward osmosis: Where are we now? , 2015 .

[24]  A. Mohammad,et al.  Nanofiltration membranes review: Recent advances and future prospects , 2015 .

[25]  Youssef,et al.  Study of a Melt Crystallization Process for Seawater Desalination , 2015 .

[26]  J S Vrouwenvelder,et al.  Forward osmosis niches in seawater desalination and wastewater reuse. , 2014, Water research.

[27]  Y. Ikegami,et al.  Design Optimization of Shore-Based Low Temperature Thermal Desalination System Utilizing the Ocean Thermal Energy , 2014 .

[28]  Ronan K. McGovern,et al.  On the potential of forward osmosis to energetically outperform reverse osmosis desalination , 2014 .

[29]  Ngai Yin Yip,et al.  Comparison of energy efficiency and power density in pressure retarded osmosis and reverse electrodialysis. , 2014, Environmental science & technology.

[30]  Markus M.M. Ylänen,et al.  Determining optimal operating pressure for AaltoRO - A novel wave powered desalination system , 2014 .

[31]  Anthony P. Straub,et al.  Thermodynamic limits of extractable energy by pressure retarded osmosis , 2014 .

[32]  Xing Xie,et al.  Performance of a mixing entropy battery alternately flushed with wastewater effluent and seawater for recovery of salinity-gradient energy , 2014 .

[33]  Bruce E Logan,et al.  Energy recovery from solutions with different salinities based on swelling and shrinking of hydrogels. , 2014, Environmental science & technology.

[34]  Jeffrey A. Ruskowitz,et al.  RO-PRO desalination: An integrated low-energy approach to seawater desalination , 2014 .

[35]  Marta C. Hatzell,et al.  Capacitive mixing power production from salinity gradient energy enhanced through exoelectrogen-generated ionic currents , 2014 .

[36]  Sven Teske,et al.  The first decade: 2004—2014: 10 years of renewable energy progress , 2014 .

[37]  Tong Zhan,et al.  Osmotically driven membrane process for the management of urban runoff in coastal regions. , 2014, Water research.

[38]  Johannes S. Vrouwenvelder,et al.  Water harvesting from municipal wastewater via osmotic gradient: An evaluation of process performance , 2013 .

[39]  A. E. Kabeel,et al.  Water Desalination Using a Humidification-Dehumidification Technique—A Detailed Review , 2013 .

[40]  Chuyang Y. Tang,et al.  A novel hybrid process of reverse electrodialysis and reverse osmosis for low energy seawater desalination and brine management , 2013 .

[41]  E. Hoek,et al.  Thermodynamic analysis of osmotic energy recovery at a reverse osmosis desalination plant. , 2013, Environmental science & technology.

[42]  Alessandro Siria,et al.  Giant osmotic energy conversion measured in a single transmembrane boron nitride nanotube , 2013, Nature.

[43]  Ludovic F. Dumée,et al.  Advances in Membrane Distillation for Water Desalination and Purification Applications , 2013 .

[44]  Noreddine Ghaffour,et al.  Technical review and evaluation of the economics of water desalination: Current and future challenges for better water supply sustainability , 2013 .

[45]  Moonyong Lee,et al.  Energy Consumption in Forward Osmosis Desalination Compared to other Desalination Techniques , 2012 .

[46]  Linda Zou,et al.  Brackish water desalination by a hybrid forward osmosis-nanofiltration system using divalent draw solute , 2012 .

[47]  Shylesh Muralidharan Assessment of ocean thermal energy conversion , 2012 .

[48]  S. Estefen,et al.  Ocean Power Conversion for Electricity Generation and Desalinated Water Production , 2011 .

[49]  Zhenyu Li,et al.  Indirect desalination of Red Sea water with forward osmosis and low pressure reverse osmosis for water reuse , 2011 .

[50]  Ming Ming Ling,et al.  Desalination process using super hydrophilic nanoparticles via forward osmosis integrated with ultrafiltration regeneration , 2011 .

[51]  M. Elimelech,et al.  The Future of Seawater Desalination: Energy, Technology, and the Environment , 2011, Science.

[52]  L. Anadón,et al.  THE WATER-ENERGY NEXUS IN THE MIDDLE EAST AND NORTH AFRICA , 2011 .

[53]  Yonggang Lin,et al.  A review on the development of tidal current energy in China , 2011 .

[54]  Dan Li,et al.  Stimuli-responsive polymer hydrogels as a new class of draw agent for forward osmosis desalination. , 2011, Chemical communications.

[55]  Yung-Tse Hung,et al.  Membrane and Desalination Technologies , 2011 .

[56]  Yunus Emami,et al.  Electricity Generation by the Ocean Thermal Energy , 2011 .

[57]  Alaa Kullab,et al.  Desalination using Membrane Distillation : Experimental and Numerical Study , 2011 .

[58]  Yi Cui,et al.  Batteries for efficient energy extraction from a water salinity difference. , 2011, Nano letters.

[59]  O. Edenhofer,et al.  Renewable Energy Sources and Climate Change Mitigation , 2011 .

[60]  M. Mahmoud,et al.  UTILIZATION OF FRESNEL LENS SOLAR COLLECTOR IN WATER HEATING FOR DESALINATION BY HUMIDIFICATION-DEHUMIDIFICATION PROCESS , 2011 .

[61]  C. D. Lundin,et al.  A multi-barrier osmotic dilution process for simultaneous desalination and purification of impaired water , 2010 .

[62]  Lawrence L. Kazmerski,et al.  Technical and economic assessment of photovoltaic-driven desalination systems , 2010 .

[63]  Pio A. Aguirre,et al.  Global Optimal Design of Mechanical Vapor Compression (MVC) Desalination Process , 2010 .

[64]  Remy Pascal,et al.  Wave Powered Desalination , 2010 .

[65]  Dc Kitty Nijmeijer,et al.  Salinity gradient energy , 2010 .

[66]  R. Magesh OTEC Technology- A World of Clean Energy and Water , 2010 .

[67]  K. Ng,et al.  Using the condenser effluent from a nuclear power plant for Ocean Thermal Energy Conversion (OTEC) , 2009 .

[68]  John H. Lienhard,et al.  The potential of solar-driven humidification–dehumidification desalination for small-scale decentralized water production , 2009 .

[69]  Andrea Cipollina,et al.  تحلية مياه البحر؛ سيرورات الطاقة التقليدية والمتجددة (Seawater Desalination. Conventional and Renewable Energy Processes) , 2009 .

[70]  Raphael Semiat,et al.  Energy issues in desalination processes. , 2008, Environmental science & technology.

[71]  Matthew Folley,et al.  An autonomous wave-powered desalination system , 2008 .

[72]  Karen Anne Finney,et al.  Ocean Thermal Energy Conversion , 2008 .

[73]  Tzahi Y Cath,et al.  Forward osmosis for concentration of anaerobic digester centrate. , 2007, Water research.

[74]  R. Senthil Kumar,et al.  Experimental studies on desalination system for ocean thermal energy utilisation , 2007 .

[75]  Menachem Elimelech,et al.  Energy requirements of ammonia-carbon dioxide forward osmosis desalination , 2007 .

[76]  J. Post,et al.  Salinity-gradient power : Evaluation of pressure-retarded osmosis and reverse electrodialysis , 2007 .

[77]  Luis M. Serra,et al.  Life cycle assessment of MSF, MED and RO desalination technologies , 2006 .

[78]  S H Salter,et al.  Numerical and experimental modelling of a modified version of the Edinburgh Duck wave energy device , 2006 .

[79]  X. D. Chen,et al.  Freezing‐Melting Process and Desalination: I. Review of the State‐of‐the‐Art , 2006 .

[80]  G. V. Medeazza “Direct” and socially-induced environmental impacts of desalination , 2005 .

[81]  Menachem Elimelech,et al.  A novel ammonia-carbon dioxide forward (direct) osmosis desalination process , 2005 .

[82]  Purnima Jalihal,et al.  Wave powered desalination system , 2004 .

[83]  D. F. Maratos Technical feasibility of wavepower for seawater desalination using the hydro-ram (Hydram) , 2003 .

[84]  Marian Turek,et al.  Cost effective electrodialytic seawater desalination , 2003 .

[85]  Andrew Grant,et al.  A wave energy conversion module for electricity or water production , 2003 .

[86]  A. Clément,et al.  Wave energy in Europe: current status and perspectives , 2002 .

[87]  R. A. Sawyer,et al.  An investigation into the economic feasibility of unsteady incompressible duct flow (waterhammer) to create hydrostatic pressure for seawater desalination using reverse osmosis , 2001 .

[88]  M. T. Chaibi,et al.  Water desalination by humidification and dehumidification of air: State of the art☆ , 2001 .

[89]  JoséM. Veza,et al.  Mechanical vapour compression desalination plants : a case study , 1995 .

[90]  Colin Pritchard,et al.  Wavepowered desalination: Experimental and mathematical modelling , 1991 .

[91]  I. Al-Mutaz Environmental impact of seawater desalination plants , 1991, Environmental monitoring and assessment.

[92]  Douglas C. Hicks,et al.  Delbouy: Ocean wave-powered seawater reverse osmosis desalination systems☆ , 1989 .

[93]  N. M. Al-Najem,et al.  Energy consumptions and costs of different desalting systems , 1987 .

[94]  J. Marcy,et al.  Quality of Freeze Concentrated Orange Juice , 1987 .

[95]  M. Rey,et al.  Ocean thermal energy and desalination , 1981 .

[96]  U. Fisher,et al.  A comparison of the relative economics of sea water desalination by vapour compression and reverse osmosis for small to medium capacity plants , 1981 .

[97]  H. F. Wiegandt,et al.  Myths about freeze desalting , 1980 .

[98]  P. Wankat Desalination by natural freezing , 1973 .