A combination of techniques has been used to investigate the condensed-phase thermal decomposition of TATB. STMBMS has been used to identify the thermal decomposition products and their temporal correlation`s. These experiments have shown that the condensed-phase decomposition proceeds through several autocatalytic pathways. Both low and high molecular weight decomposition products have been identified. Mono-, di- and tri-furazans products have been identified and, their temporal behaviors are consistent with a stepwise loss of water. AFM has been used to correlate the decomposition chemistry with morphological changes occurring as a function of heating. Patches of small 25-140 nm round holes were observed throughout the lattice of TATB crystals that were heated briefly to 300C. It is likely that these holes show where decomposition reactions have started. Evidence of decomposition products have been seen in TATB that has been held at 250C for one hour.