Computer Controlled Systems: Analysis and Design with Process-orientated Models
暂无分享,去创建一个
I Operational transformations of functions of continuous and discrete arguments.- 1 Bilateral Laplace transforms.- 2 Operational transformations for discrete-time functions.- 3 Displaced pulse frequency response.- 4 Discrete LT for functions of a continuous argument.- II Linear periodic operators and systems.- 5 Linear time-invariant operators and systems.- 6 Linear periodic operators and systems.- 7 Analysis of linear periodic operators and systems.- 8 Stochastic analysis and H2-norm of LPO.- III Mathematical description of sampled-data systems in continuous time.- 9 Open-loop SD systems.- 10 Open-loop systems with a computer.- 11 Closed-loop systems with a single sampling unit.- 12 Systems with several sampling units.- IV Analysis of SD systems in continuous time.- 13 Open-loop systems under deterministic disturbances.- 14 Analysis of deterministic feedback SD systems.- 15 Analysis of SD systems under stochastic disturbances.- V Direct synthesis of SD systems.- 16 Quadratic optimization of open-loop SD systems.- 17 Direct design of feedback SD systems.- 18 Direct polynomial-design methods.- Appendices.- A Rational periodic functions.- A.1 Basic definitions.- A.2 Causal and limited rational periodic functions.- A.3 Zeros and poles of rational periodic functions.- A.4 Partial fraction expansion of limited rational periodic functions.- A.5 Boundedness of rational periodic functions.- A.6 Calculating integrals from rational periodic functions.- A.7 Integration of products of rational periodic functions.- A.8 Calculation of parameter integrals.- B DirectSD - a toolbox for direct design of SD systems.- B.1 Introduction.- B.2 Theoretical basis.- B. System description.- B.4 Optimal control under stochastic disturbances.- B.4.1 Optimal digital filtering.- B.5 Design of optimal tracking systems.- B.5.1 One degree of freedom systems.- B.5.2 Systems with two controllers.- B.6 Other possibilities.- B.6.1 Analysis of SD systems in continuous time.- B.6.3 Demonstration programs.- B.7 Numerical examples.- B.7.1 Design of optimal stabilizing system.- B.7.2 Redesign problem.- B.8 Conclusions.