Nitrogen isotopic fractionation during abiotic synthesis of organic solid particles

The formation of organic compounds is generally assumed to result from abiotic processes in the Solar System, with the exception of biogenic organics on Earth. Nitrogen-bearing organics are of particular interest, notably for prebiotic perspectives but also for overall comprehension of organic formation in the young solar system and in planetary atmospheres. We have investigated abiotic synthesis of organics upon plasma discharge, with special attention to N isotope fractionation. Organic aerosols were synthesized from N2-CH4 and N2-CO gaseous mixtures using low-pressure plasma discharge experiments, aimed at simulating chemistry occurring in Titan’s atmosphere and in the protosolar nebula, respectively. The nitrogen content, the N speciation and the N isotopic composition were analyzed in the resulting organic aerosols. Nitrogen is efficiently incorporated into the synthesized solids, independently of the oxidation degree, of the N2 content of the starting gas mixture, and of the nitrogen speciation in the aerosols. The aerosols are depleted in 15N by 15-25 ‰ relative to the initial N2 gas, whatever the experimental setup is. Such an isotopic fractionation is attributed to mass-dependent kinetic effect(s). Nitrogen isotope fractionation upon electric discharge cannot account for the large N isotope variations observed among solar system objects and reservoirs. Extreme N isotope signatures in the solar system are more likely the result of self-shielding during N2 photodissociation, exotic effect during photodissociation of N2 and/or low temperature ion-molecule isotope exchange. Kinetic N isotope fractionation may play a significant role in the Titan’s atmosphere. In the Titan's night side, 15N-depletion resulting from electron driven reactions would counterbalance photo-induced 15N enrichments occurring on the day's side. Kinetic N isotope fractionation may also be responsible for the lower δ15N values of Archean sediments compared to Proterozoic-Phanerozoic values (Beaumont and Robert, 1999). We suggest that the low δ15N values of Archean organics are partly the result of abiotic synthesis of organics that occurred at that time, and that the subsequent development of the biosphere resulted in shifts of δ15N towards higher values.

[1]  Tom Regier,et al.  Nitrogen K-edge XANES - an overview of reference compounds used to identify unknown organic nitrogen in environmental samples. , 2007, Journal of synchrotron radiation.

[2]  S. Boyd Ammonium as a biomarker in Precambrian metasediments , 2001 .

[3]  Cyril Szopa,et al.  Titan's Atmosphere: An Optimal Gas Mixture for Aerosol Production? , 2010 .

[4]  D. Hunten,et al.  The abundances of constituents of Titan's atmosphere from the GCMS instrument on the Huygens probe , 2005, Nature.

[5]  Paul F. McMillan,et al.  New experimental constraints on the composition and structure of tholins , 2008 .

[6]  Hiroshi Imanaka,et al.  Formation of nitrogenated organic aerosols in the Titan upper atmosphere , 2010, Proceedings of the National Academy of Sciences.

[7]  J. Berndt,et al.  Capacitively coupled radio-frequency discharges in nitrogen at low pressures , 2011 .

[8]  B. Bézard,et al.  The Titan 14N/15N and 12C/13C isotopic ratios in HCN from Cassini/CIRS , 2007 .

[9]  T. Tyliszczak,et al.  Quantitative organic and light‐element analysis of comet 81P/Wild 2 particles using C‐, N‐, and O‐μ‐XANES , 2008 .

[10]  N. Teanby,et al.  Nitrogen in the Stratosphere of Titan from Cassini CIRS Infrared Spectroscopy , 2013, 1303.3039.

[11]  T. Gautier,et al.  Volatile products controlling Titan's tholins production , 2012 .

[12]  J. G. Buijnsters,et al.  Hydrogen stability in hydrogenated amorphous carbon films with polymer-like and diamond-like structure , 2012 .

[13]  K. Zahnle,et al.  Photochemistry of methane and the formation of hydrocyanic acid (HCN) in the Earth's early atmosphere , 1986 .

[14]  J. Wahlund,et al.  On the ionospheric structure of Titan , 2009 .

[15]  S. Derenne,et al.  Deuterium exchange rate between D3+ and organic CH bonds: Implication for D enrichment in meteoritic IOM , 2011 .

[16]  T. Govers,et al.  Excitation and decay of the C2Σ+u state of N+u in the case of electron impact on n2 , 1974 .

[17]  O. Mullins,et al.  Molecular Structure of Nitrogen in Coal from XANES Spectroscopy , 1993 .

[18]  J. Kasting,et al.  Revisiting HCN formation in Earth's early atmosphere , 2011 .

[19]  D. Canfield,et al.  Production of 15N-depleted biomass during cyanobacterial N2-fixation at high Fe concentrations , 2008 .

[20]  J. Wahlund,et al.  Aerosol growth in Titan’s ionosphere , 2013, Proceedings of the National Academy of Sciences.

[21]  C. Chyba,et al.  The early faint sun paradox: organic shielding of ultraviolet-labile greenhouse gases , 1997, Science.

[22]  Sherwood Chang,et al.  Isotopic characteristics of simulated meteoritic organic matter: 1 — Kerogen-like material , 2005, Origins of life and evolution of the biosphere.

[23]  S. Miller A production of amino acids under possible primitive earth conditions. , 1953, Science.

[24]  Daniel Gautier,et al.  Composition of Titan's lower atmosphere and simple surface volatiles as measured by the Cassini‐Huygens probe gas chromatograph mass spectrometer experiment , 2010 .

[25]  P. Lavvas,et al.  Energy deposition and primary chemical products in Titan’s upper atmosphere , 2010 .

[26]  B. Marty,et al.  NITROGEN AND ARGON ISOTOPES IN OCEANIC BASALTS , 1997 .

[27]  T. Gautier,et al.  Nitrile gas chemistry in Titan's atmosphere , 2011 .

[28]  R. Field,et al.  The spectra and dynamics of diatomic molecules , 2004 .

[29]  D. Pinti,et al.  Nitrogen and argon signatures in 3.8 to 2.8 Ga metasediments: clues on the chemical state of the archean ocean and the deep biosphere , 2001 .

[30]  A. Davis,et al.  Timescales for the evolution of oxygen isotope compositions in the solar nebula , 2009 .

[31]  Alexander A. Pavlov,et al.  A Hydrogen-Rich Early Earth Atmosphere , 2005, Science.

[32]  Mundiyath Venugopalan,et al.  Plasma Chemistry I , 1980 .

[33]  B. Marty,et al.  Volatiles (He, C, N, Ar) in mid-ocean ridge basalts: assesment of shallow-level fractionation and characterization of source composition , 1999 .

[34]  J. R. O'neil Theoretical and experimental aspects of isotopic fractionation , 1986 .

[35]  Francis Codron,et al.  Exploring the faint young Sun problem and the possible climates of the Archean Earth with a 3‐D GCM , 2013, 1310.4286.

[36]  J. Jimenez,et al.  Nitrogen incorporation in CH(4)-N(2) photochemical aerosol produced by far ultraviolet irradiation. , 2012, Astrobiology.

[37]  P. Hoppe,et al.  Interstellar Chemistry Recorded in Organic Matter from Primitive Meteorites , 2006, Science.

[38]  J. Childress,et al.  Deep-Sea Hydrocarbon Seep Communities: Evidence for Energy and Nutritional Carbon Sources , 1987, Science.

[39]  L. Bonal,et al.  Highly 15N-enriched chondritic clasts in the CB/CH-like meteorite Isheyevo , 2010 .

[40]  J. Aléon MULTIPLE ORIGINS OF NITROGEN ISOTOPIC ANOMALIES IN METEORITES AND COMETS , 2010 .

[41]  L. Grossman Condensation in the primitive solar nebula , 1972 .

[42]  T. Gautier Experimental simulation of Titan's aerosols formation , 2013 .

[43]  L. Bonal,et al.  The 15N-enrichment in dark clouds and Solar System objects , 2013, 1302.6318.

[44]  E. Anderson,et al.  Interferometer-controlled scanning transmission X-ray microscopes at the Advanced Light Source. , 2003, Journal of synchrotron radiation.

[45]  Y. Yung,et al.  Source of Nitrogen Isotope Anomaly in HCN in the Atmosphere of Titan , 2007 .

[46]  George D. Cody,et al.  The origin and evolution of chondrites recorded in the elemental and isotopic compositions of their macromolecular organic matter , 2007 .

[47]  R. Levine,et al.  On the strong and selective isotope effect in the UV excitation of N2 with implications toward the nebula and Martian atmosphere , 2011, Proceedings of the National Academy of Sciences.

[48]  B. Horsfield,et al.  Geochemical evolution of organic-rich shales with increasing maturity: A STXM and TEM study of the Posidonia Shale (Lower Toarcian, northern Germany) , 2012 .

[49]  D. R. Rushneck,et al.  The composition of the atmosphere at the surface of Mars , 1977 .

[50]  E. Hébrard,et al.  Coupled noble gas–hydrocarbon evolution of the early Earth atmosphere upon solar UV irradiation , 2014 .

[51]  Jean-Jacques Correia,et al.  Mid- and far-infrared absorption spectroscopy of Titan's aerosols analogues , 2012 .

[52]  Paul F. McMillan,et al.  New insights into the structure and chemistry of Titan's tholins via13C and 15N solid state nuclear magnetic resonance spectroscopy , 2012 .

[53]  E. Herbst,et al.  The possibility of nitrogen isotopic fractionation in interstellar clouds , 2000 .

[54]  David L. Kirchman,et al.  Isotope fractionation associated with ammonium uptake by a marine bacterium , 1992 .

[55]  J. Kasting Evolution of a habitable planet , 2003 .

[56]  B. Horsfield,et al.  Formation of nanoporous pyrobitumen residues during maturation of the Barnett Shale (Fort Worth Basin) , 2012 .

[57]  Robin Wordsworth,et al.  Hydrogen-Nitrogen Greenhouse Warming in Earth's Early Atmosphere , 2013, Science.

[58]  Bruce Block,et al.  Ion Neutral Mass Spectrometer Results from the First Flyby of Titan , 2005, Science.

[59]  J. Kasting,et al.  UV shielding of NH3 and O2 by organic hazes in the Archean atmosphere , 2001 .

[60]  D. desmarais,et al.  Prebiotic organic syntheses and the origin of life , 1983 .

[61]  P. Hubert,et al.  Experimental determination of nitrogen kinetic isotope fractionation: Some principles; illustration for the denitrification and nitrification processes , 1981, Plant and Soil.

[62]  F. Robert,et al.  Nitrogen isotope ratios of kerogens in Precambrian cherts: a record of the evolution of atmosphere chemistry? , 1999 .

[63]  S. Charnley,et al.  Nitrogen Isotopic Fractionation of Interstellar Nitriles , 2008 .

[64]  Stephen A. Macko,et al.  Isotopic fractionation of nitrogen and carbon in the synthesis of amino acids by microorganisms , 1987 .

[65]  Jean-Jacques Correia,et al.  PAMPRE: A dusty plasma experiment for Titan's tholins production and study , 2006 .

[66]  D. Canfield,et al.  Metal limitation of cyanobacterial N2 fixation and implications for the Precambrian nitrogen cycle , 2006 .

[67]  K. Donohoe,et al.  Plasma Synthesis of Carbonaceous Material with Noble Gas Tracers , 1981 .

[68]  T. Gries,et al.  Diagnostics and modeling of CH4–CO2 plasmas for nanosmooth diamond deposition: Comparison to experimental data , 2009 .

[69]  S. Derenne,et al.  Model of molecular structure of the insoluble organic matter isolated from Murchison meteorite , 2010 .

[70]  Shawn Domagal-Goldman,et al.  A bistable organic-rich atmosphere on the Neoarchaean Earth , 2012 .

[71]  T. Gautier,et al.  Titan's atmosphere simulation experiment using continuum UV‐VUV synchrotron radiation , 2013 .

[72]  L. Li,et al.  Radiation damage in soft X-ray microscopy , 2009 .

[73]  B. Marty,et al.  Chondritic-like xenon trapped in Archean rocks: A possible signature of the ancient atmosphere , 2011 .

[74]  H. Leroux,et al.  Pristine extraterrestrial material with unprecedented nitrogen isotopic variation , 2009, Proceedings of the National Academy of Sciences.

[75]  G. Cody,et al.  XANES analysis of organic residues produced from the UV irradiation of astrophysical ice analogs , 2011 .

[76]  D. D. Marais,et al.  Molecular carbon isotopic evidence for the origin of geothermal hydrocarbons , 1981, Nature.

[77]  R. Wiens,et al.  A 15N-Poor Isotopic Composition for the Solar System As Shown by Genesis Solar Wind Samples , 2011, Science.

[78]  Conor A. Nixon,et al.  The early evolution of the atmospheres of terrestrial planets , 2013 .

[79]  P. Harrison,et al.  Nitrogen isotope fractionation during the uptake and assimilation of nitrate, nitrite, ammonium, and urea by a marine diatom , 1998 .

[80]  Y. Yung,et al.  MEASUREMENTS OF ISOTOPE EFFECTS IN THE PHOTOIONIZATION OF N2 AND IMPLICATIONS FOR TITAN'S ATMOSPHERE , 2011 .

[81]  J. Cui Analysis of Titan's neutral upper atmosphere from Cassini Ion Neutral Mass Spectrometer measurements in the Closed Source Neutral mode , 2009 .

[82]  E. C. Zipf,et al.  On the dissociation of nitrogen by electron impact and by E.U.V. photo-absorption , 1978 .

[83]  Pascal Pernot,et al.  Nitrogen in Titan’s Atmospheric Aerosol Factory , 2013 .

[84]  A. Hauchecorne,et al.  Complex organic matter in Titan's atmospheric aerosols from in situ pyrolysis and analysis , 2005, Nature.

[85]  K. Benzerara,et al.  Multiscale characterization of pyritized plant tissues in blueschist facies metamorphic rocks , 2010 .

[86]  K. Lodders Solar System Abundances and Condensation Temperatures of the Elements , 2003 .

[87]  Christopher P. McKay,et al.  Organic haze on Titan and the early Earth , 2006, Proceedings of the National Academy of Sciences.

[88]  C. Thomazo,et al.  Biogeochemical Cycling of Nitrogen on the Early Earth , 2013 .

[89]  B. Marty,et al.  Nitrogen in peridotite xenoliths: Lithophile behavior and magmatic isotope fractionation , 2009 .

[90]  C. Jacobsen,et al.  Carbon (1s) NEXAFS spectroscopy of biogeochemically relevant reference organic compounds , 2009 .

[91]  B. Marty,et al.  Nitrogen Isotopic Composition and Density of the Archean Atmosphere , 2013, Science.

[92]  R. Field,et al.  Chapter 7 – Photodissociation Dynamics , 2004 .

[93]  J. Lorquet,et al.  Isotopic effects in accidental predissociation. The case of the C2Σ+u state of N+2 , 1974 .

[94]  M Newville,et al.  ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. , 2005, Journal of synchrotron radiation.

[95]  J. Waite,et al.  Model-data comparisons for Titan's nightside ionosphere , 2009 .

[96]  O. Mullins,et al.  Determination of the Nitrogen Chemical Structures in Petroleum Asphaltenes Using XANES Spectroscopy , 1993 .

[97]  R. Michener,et al.  Stable isotopes in ecology and environmental science , 1995 .

[98]  A. Jolly,et al.  Capacitively coupled plasma used to simulate Titan's atmospheric chemistry , 2010 .

[99]  J. Kasting,et al.  Organic haze, glaciations and multiple sulfur isotopes in the Mid-Archean Era , 2008 .

[100]  K. Peters,et al.  Correlation of carbon and nitrogen stable isotope ratios in sedimentary organic matter 1 , 1978 .

[101]  O. Poch,et al.  Can laboratory tholins mimic the chemistry producing Titan's aerosols? A review in light of ACP experimental results , 2013 .

[102]  J. Böhlke,et al.  Compilation of minimum and maximum isotope ratios of selected elements in naturally occurring terrestrial materials and reagents , 2002 .

[103]  P. Cartigny,et al.  Kinetic nitrogen isotope fractionation associated with thermal decomposition of NH3: Experimental results and potential applications to trace the origin of N2 in natural gas and hydrothermal systems , 2009 .

[104]  J. Prochaska,et al.  Large Excess of Heavy Nitrogen in Both Hydrogen Cyanide and Cyanogen from Comet 17P/Holmes , 2008, 0804.1192.

[105]  G. Tzvetkov,et al.  XANES, Raman and XRD study of anthracene-based cokes and saccharose-based chars submitted to high-temperature pyrolysis , 2010 .

[106]  J. Jimenez,et al.  Reduction in haze formation rate on prebiotic Earth in the presence of hydrogen. , 2009, Astrobiology.