Global minimization by reducing the duality gap

We derive a general principle demonstrating that by partitioning the feasible set, the duality gap, existing between a nonconvex program and its lagrangian dual, can be reduced, and in important special cases, even eliminated. The principle can be implemented in a Branch and Bound algorithm which computes an approximate global solution and a corresponding lower bound on the global optimal value. The algorithm involves decomposition and a nonsmooth local search. Numerical results for applying the algorithm to the pooling problem in oil refineries are given.