Combinatorial 3D Shape Generation via Sequential Assembly

3D shape generation has drawn attention in computer vision and machine learning since it opens an inspiring way to designing or creating new objects. Existing methods, however, do not reflect an important aspect of human generation processes in real life -- we often create a 3D shape by sequentially assembling geometric primitives into a combinatorial configuration. In this work, we propose a new 3D shape generation algorithm that aims to create such a combinatorial configuration from a set of volumetric primitives. To tackle the exponential growth of feasible combinations in terms of the number of primitives, we adopt sequential model-based optimization. Our method sequentially assembles primitives by exploiting and exploring adequate regions that are constrained by the current primitive placements. The evaluation function conveys global structure guidance for the assembling process to follow. Experimental results demonstrate that our method successfully generates combinatorial objects and simulates more realistic generation processes. We also introduce a new dataset for combinatorial 3D shape generation.

[1]  Peter I. Frazier,et al.  A Tutorial on Bayesian Optimization , 2018, ArXiv.

[2]  Leonidas J. Guibas,et al.  Learning Representations and Generative Models for 3D Point Clouds , 2017, ICML.

[3]  Donald R. Jones,et al.  Efficient Global Optimization of Expensive Black-Box Functions , 1998, J. Glob. Optim..

[4]  Mark Pauly,et al.  Automatic Generation of Constructable Brick Sculptures , 2013, Eurographics.

[5]  Kevin Leyton-Brown,et al.  Sequential Model-Based Optimization for General Algorithm Configuration , 2011, LION.

[6]  Jianxiong Xiao,et al.  3D ShapeNets: A deep representation for volumetric shapes , 2014, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[7]  M. Bendsøe,et al.  Generating optimal topologies in structural design using a homogenization method , 1988 .

[8]  Søren Eilers The LEGO Counting Problem , 2016, Am. Math. Mon..

[9]  Leonidas J. Guibas,et al.  ObjectNet3D: A Large Scale Database for 3D Object Recognition , 2016, ECCV.

[10]  Daniela Rus,et al.  M-blocks: Momentum-driven, magnetic modular robots , 2013, 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[11]  Joseph L. Mundy,et al.  Change Detection in a 3-d World , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[12]  Radhika Nagpal,et al.  Programmable self-assembly in a thousand-robot swarm , 2014, Science.

[13]  Lourdes Agapito,et al.  Part-based modelling of compound scenes from images , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[14]  Chun-Kai Huang,et al.  Legolization: optimizing LEGO designs , 2015, ACM Trans. Graph..

[15]  Abdelkhalak El Hami,et al.  Reliability‐Based Topology Optimization , 2013 .

[16]  V. Kobelev,et al.  Bubble method for topology and shape optimization of structures , 1994 .

[17]  C. D. Perttunen,et al.  Lipschitzian optimization without the Lipschitz constant , 1993 .

[18]  Robert J. Wood,et al.  Robot self-assembly by folding: A printed inchworm robot , 2013, 2013 IEEE International Conference on Robotics and Automation.

[19]  Nando de Freitas,et al.  A Tutorial on Bayesian Optimization of Expensive Cost Functions, with Application to Active User Modeling and Hierarchical Reinforcement Learning , 2010, ArXiv.

[20]  Nando de Freitas,et al.  Taking the Human Out of the Loop: A Review of Bayesian Optimization , 2016, Proceedings of the IEEE.

[21]  A. Clausen Topology Optimization for Additive Manufacturing , 2016 .

[22]  Leonidas J. Guibas,et al.  ShapeNet: An Information-Rich 3D Model Repository , 2015, ArXiv.

[23]  Lukasz Kaiser,et al.  Attention is All you Need , 2017, NIPS.

[24]  J. Petersson,et al.  Topology optimization of fluids in Stokes flow , 2003 .

[25]  Max Welling,et al.  Auto-Encoding Variational Bayes , 2013, ICLR.

[26]  Takashi Maekawa,et al.  Automatic generation of LEGO building instructions from multiple photographic images of real objects , 2016, Comput. Aided Des..

[27]  Yoshua Bengio,et al.  Generative Adversarial Nets , 2014, NIPS.

[28]  Byung Ro Moon,et al.  Finding an Optimal LEGO® Brick Layout of Voxelized 3D Object Using a Genetic Algorithm , 2015, GECCO.

[29]  G. Whitesides,et al.  Self-Assembly at All Scales , 2002, Science.

[30]  Tianmiao Wang,et al.  Sambot: A self-assembly modular robot for swarm robot , 2010, 2010 IEEE International Conference on Robotics and Automation.

[31]  Lin Gao,et al.  SDM-NET: Deep Generative Network for Structured Deformable Mesh , 2019 .

[32]  Matthias Poloczek,et al.  Bayesian Optimization of Combinatorial Structures , 2018, ICML.

[33]  Andreas Krause,et al.  Information-Theoretic Regret Bounds for Gaussian Process Optimization in the Bandit Setting , 2009, IEEE Transactions on Information Theory.

[34]  Carl E. Rasmussen,et al.  Gaussian processes for machine learning , 2005, Adaptive computation and machine learning.

[35]  Hao Su,et al.  A Point Set Generation Network for 3D Object Reconstruction from a Single Image , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[36]  Lin Gao,et al.  SDM-NET , 2019, ACM Trans. Graph..

[37]  Kirthevasan Kandasamy,et al.  A Flexible Framework for Multi-Objective Bayesian Optimization using Random Scalarizations , 2018, UAI.

[38]  Jasper Snoek,et al.  Practical Bayesian Optimization of Machine Learning Algorithms , 2012, NIPS.

[39]  Mathieu Aubry,et al.  AtlasNet: A Papier-M\^ach\'e Approach to Learning 3D Surface Generation , 2018, CVPR 2018.

[40]  Tobias Ritschel,et al.  Escaping Plato's Cave using Adversarial Training: 3D Shape From Unstructured 2D Image Collections , 2018, ArXiv.

[41]  Jonathan Scarlett,et al.  Tight Regret Bounds for Bayesian Optimization in One Dimension , 2018, ICML.

[42]  Jiajun Wu,et al.  Learning a Probabilistic Latent Space of Object Shapes via 3D Generative-Adversarial Modeling , 2016, NIPS.

[43]  I. Ashcroft,et al.  Topology Optimization for Additive Manufacturing , 2011 .

[44]  S. M. Ali Eslami,et al.  PolyGen: An Autoregressive Generative Model of 3D Meshes , 2020, ICML.

[45]  Seungjin Choi,et al.  AutoML Challenge: AutoML Framework Using Random Space Partitioning Optimizer , 2016 .

[46]  Vladlen Koltun,et al.  Open3D: A Modern Library for 3D Data Processing , 2018, ArXiv.

[47]  Jorge Nocedal,et al.  On the limited memory BFGS method for large scale optimization , 1989, Math. Program..