A degenerate operator in non divergence form

In this paper we consider a fourth order operator in nondivergence form Au := au′′′′, where a : [0, 1] → R+ is a function that degenerates somewhere in the interval. We prove that the operator generates an analytic semigroup, under suitable assumptions on the function a. We extend these results to a general operator Anu := au .

[1]  Sergey Zelik,et al.  On a generalized Cahn-Hilliard equation with biological applications , 2014 .

[2]  Stefano Finzi Vita,et al.  Area-preserving curve-shortening flows: from phase separation to image processing , 2002 .

[3]  J. Lions,et al.  Problèmes aux limites non homogènes et applications , 1968 .

[4]  Dewel,et al.  Chemically frozen phase separation in an adsorbed layer. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[5]  P. Cannarsa,et al.  Carleman estimates for degenerate parabolic operators with applications to null controllability , 2006 .

[6]  Steven M. Wise,et al.  Adaptive, second-order in time, primitive-variable discontinuous Galerkin schemes for a Cahn–Hilliard equation with a mass source , 2015 .

[7]  Julia,et al.  Vector-valued Laplace Transforms and Cauchy Problems , 2011 .

[8]  G. Grün Degenerate Parabolic Differential Equations of Fourth Order and a Plasticity Model with Non-Local Hardening , 1995 .

[9]  S. Tremaine,et al.  On the Origin of Irregular Structure in Saturn's Rings , 2002, astro-ph/0211149.

[10]  Bo Li,et al.  Center for Scientific Computation And Mathematical Modeling , 2003 .

[11]  A. Friedman,et al.  Higher order nonlinear degenerate parabolic equations , 1990 .

[12]  Piermarco Cannarsa,et al.  Null controllability of degenerate parabolic operators with drift , 2007, Networks Heterog. Media.

[13]  James D. Murray,et al.  A generalized diffusion model for growth and dispersal in a population , 1981 .

[14]  Dimitri Mugnai,et al.  Control of Degenerate and Singular Parabolic Equations , 2021 .

[15]  Oliver Stein,et al.  A fourth-order parabolic equation modeling epitaxial thin film growth , 2003 .

[16]  G. Fragnelli,et al.  Carleman estimates and observability inequalities for parabolic equations with interior degeneracy , 2012, 1211.6151.

[17]  A. Karma,et al.  Evolution of nanoporosity in dealloying , 2001, Nature.

[18]  M. Bertsch,et al.  Nonnegative solutions of a fourth-order nonlinear degenerate parabolic equation , 1995 .

[19]  P. Alam,et al.  R , 1823, The Herodotus Encyclopedia.

[20]  I. Klapper,et al.  Role of cohesion in the material description of biofilms. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[21]  Chao Zhang,et al.  A GENERAL FOURTH-ORDER PARABOLIC EQUATION , 2010 .

[22]  Johan van de Koppel,et al.  Phase separation explains a new class of self-organized spatial patterns in ecological systems , 2013, Proceedings of the National Academy of Sciences.

[23]  Piermarco Cannarsa,et al.  Controllability results for a class of one-dimensional degenerate parabolic problems in nondivergence form , 2008 .

[24]  S. Bankoff,et al.  Long-scale evolution of thin liquid films , 1997 .

[25]  G. Fragnelli,et al.  GENERATORS WITH INTERIOR DEGENERACY ON SPACES OF L 2 TYPE , 2012 .

[26]  Tsuyoshi Murata,et al.  {m , 1934, ACML.

[27]  C. M. Elliott,et al.  On the Cahn-Hilliard equation with degenerate mobility , 1996 .

[28]  Mary C. Pugh,et al.  The lubrication approximation for thin viscous films: Regularity and long-time behavior of weak solutions , 1996 .

[29]  Andrea L. Bertozzi,et al.  Inpainting of Binary Images Using the Cahn–Hilliard Equation , 2007, IEEE Transactions on Image Processing.

[30]  Harald Garcke,et al.  On A Fourth-Order Degenerate Parabolic Equation: Global Entropy Estimates, Existence, And Qualitativ , 1998 .

[31]  Sining Zheng,et al.  Existence and asymptotic behavior of solutions to a nonlinear parabolic equation of fourth order , 2008 .

[32]  Numerical Studies of Cahn-hilliard Equation and Applications in Image Processing , .