Molecular Imaging of Macrophages in Atherosclerosis

[1]  Y. Magata,et al.  18F-FDG PET and intravascular ultrasonography (IVUS) images compared with histology of atherosclerotic plaques: 18F-FDG accumulates in foamy macrophages , 2014, European Journal of Nuclear Medicine and Molecular Imaging.

[2]  V. Fuster,et al.  Optimizing 18F-FDG PET/CT imaging of vessel wall inflammation: the impact of 18F-FDG circulation time, injected dose, uptake parameters, and fasting blood glucose levels , 2014, European Journal of Nuclear Medicine and Molecular Imaging.

[3]  T. Imaizumi,et al.  Pioglitazone decreases coronary artery inflammation in impaired glucose tolerance and diabetes mellitus: evaluation by FDG-PET/CT imaging. , 2013, JACC. Cardiovascular imaging.

[4]  Z. Fayad,et al.  Intensification of statin therapy results in a rapid reduction in atherosclerotic inflammation: results of a multicenter fluorodeoxyglucose-positron emission tomography/computed tomography feasibility study. , 2013, Journal of the American College of Cardiology.

[5]  T. V. van Berkel,et al.  Scavenger Receptor-AI–Targeted Iron Oxide Nanoparticles for In Vivo MRI Detection of Atherosclerotic Lesions , 2013, Arteriosclerosis, thrombosis, and vascular biology.

[6]  M. Donath,et al.  Inflammation in obesity and diabetes: islet dysfunction and therapeutic opportunity. , 2013, Cell metabolism.

[7]  Z. Fayad,et al.  Monitoring plaque inflammation in atherosclerotic rabbits with an iron oxide (P904) and (18)F-FDG using a combined PET/MR scanner. , 2013, Atherosclerosis.

[8]  M. Aikawa,et al.  Functional molecular imaging linking macrophages to reverse cholesterol transport. , 2013, Circulation journal : official journal of the Japanese Circulation Society.

[9]  S. Dhar,et al.  Biodegradable synthetic high-density lipoprotein nanoparticles for atherosclerosis , 2013, Proceedings of the National Academy of Sciences.

[10]  P. Libby Inflammation in Atherosclerosis , 2012, Arteriosclerosis, thrombosis, and vascular biology.

[11]  Tom MacGillivray,et al.  Ultrasmall Superparamagnetic Particles of Iron Oxide in Patients With Acute Myocardial Infarction: Early Clinical Experience , 2012, Circulation. Cardiovascular imaging.

[12]  V. Fuster,et al.  Regression of inflammation in atherosclerosis by the LXR agonist R211945: a noninvasive assessment and comparison with atorvastatin. , 2012, JACC. Cardiovascular imaging.

[13]  A. Davies,et al.  Imaging intraplaque inflammation in carotid atherosclerosis with 11C-PK11195 positron emission tomography/computed tomography. , 2012, European heart journal.

[14]  J. Aster,et al.  Notch ligand Delta-like 4 blockade attenuates atherosclerosis and metabolic disorders , 2012, Proceedings of the National Academy of Sciences.

[15]  M. McConnell,et al.  Bioluminescence and Magnetic Resonance Imaging of Macrophage Homing to Experimental Abdominal Aortic Aneurysms , 2012, Molecular imaging.

[16]  R. Cury,et al.  Distribution of Inflammation Within Carotid Atherosclerotic Plaques With High-Risk Morphological Features: A Comparison Between Positron Emission Tomography Activity, Plaque Morphology, and Histopathology , 2012, Circulation. Cardiovascular imaging.

[17]  P. Libby,et al.  Selective Inhibition of Matrix Metalloproteinase-13 Increases Collagen Content of Established Mouse Atherosclerosis , 2011, Arteriosclerosis, thrombosis, and vascular biology.

[18]  K. J. Grande-Allen,et al.  Calcific Aortic Valve Disease : Not Simply a Degenerative Process A Review and Agenda for Research from the National Heart and Lung and Blood Institute Aortic Stenosis Working Group , 2012 .

[19]  T. Imaizumi,et al.  Pioglitazone attenuates atherosclerotic plaque inflammation in patients with impaired glucose tolerance or diabetes a prospective, randomized, comparator-controlled study using serial FDG PET/CT imaging study of carotid artery and ascending aorta. , 2011, JACC. Cardiovascular imaging.

[20]  Brett E Bouma,et al.  Intravascular optical imaging technology for investigating the coronary artery. , 2011, JACC. Cardiovascular imaging.

[21]  P. Libby,et al.  Hypoxia but not inflammation augments glucose uptake in human macrophages: Implications for imaging atherosclerosis with 18fluorine-labeled 2-deoxy-D-glucose positron emission tomography. , 2011, Journal of the American College of Cardiology.

[22]  Vasilis Ntziachristos,et al.  Two-dimensional intravascular near-infrared fluorescence molecular imaging of inflammation in atherosclerosis and stent-induced vascular injury. , 2011, Journal of the American College of Cardiology.

[23]  A. Straube,et al.  Vessel Wall Inflammation in Spontaneous Cervical Artery Dissection: A Prospective, Observational Positron Emission Tomography, Computed Tomography, and Magnetic Resonance Imaging Study , 2011, Stroke.

[24]  E. Aikawa,et al.  Molecular Imaging Insights Into Early Inflammatory Stages of Arterial and Aortic Valve Calcification , 2011, Circulation research.

[25]  V. Ntziachristos,et al.  Indocyanine Green Enables Near-Infrared Fluorescence Imaging of Lipid-Rich, Inflamed Atherosclerotic Plaques , 2011, Science Translational Medicine.

[26]  Vasilis Ntziachristos,et al.  Intra-arterial catheter for simultaneous microstructural and molecular imaging in vivo , 2011, Nature Medicine.

[27]  Calum Gray,et al.  Abdominal Aortic Aneurysm Growth Predicted by Uptake of Ultrasmall Superparamagnetic Particles of Iron Oxide: A Pilot Study , 2011, Circulation. Cardiovascular imaging.

[28]  René M. Botnar,et al.  Assessment of atherosclerotic plaque burden with an elastin-specific magnetic resonance contrast agent , 2011, Nature Medicine.

[29]  I. Y. Chen,et al.  Cardiovascular molecular imaging: focus on clinical translation. , 2011, Circulation.

[30]  Young Seok Cho,et al.  Targeted iron oxide particles for in vivo magnetic resonance detection of atherosclerotic lesions with antibodies directed to oxidation-specific epitopes. , 2011, Journal of the American College of Cardiology.

[31]  Martin J Graves,et al.  In vivo carotid plaque MRI using quantitative T2* measurements with ultrasmall superparamagnetic iron oxide particles: a dose–response study to statin therapy , 2011, NMR in biomedicine.

[32]  K. Briley-Saebo,et al.  Imaging of Oxidation-Specific Epitopes in Atherosclerosis and Macrophage-Rich Vulnerable Plaques , 2010, Current cardiovascular imaging reports.

[33]  E. Aikawa,et al.  Cardiovascular calcification: an inflammatory disease. , 2011, Circulation journal : official journal of the Japanese Circulation Society.

[34]  Ferenc A Jolesz,et al.  Intraoperative imaging in neurosurgery: where will the future take us? , 2011, Acta neurochirurgica. Supplement.

[35]  F. Jaffer Intravital fluorescence microscopic molecular imaging of atherosclerosis. , 2011, Methods in molecular biology.

[36]  Ralph Weissleder,et al.  High-Resolution Magnetic Resonance Imaging Enhanced With Superparamagnetic Nanoparticles Measures Macrophage Burden in Atherosclerosis , 2010, Circulation.

[37]  L. Johnson,et al.  Noninvasive monitoring the biology of atherosclerotic plaque development with radiolabeled annexin V and matrix metalloproteinase inhibitor in spontaneous atherosclerotic mice , 2010, Journal of nuclear cardiology : official publication of the American Society of Nuclear Cardiology.

[38]  J. Mayer,et al.  Intravital molecular imaging of small-diameter tissue-engineered vascular grafts in mice: a feasibility study. , 2010, Tissue engineering. Part C, Methods.

[39]  S. Caruthers,et al.  MR molecular imaging of aortic angiogenesis. , 2010, JACC. Cardiovascular imaging.

[40]  R. Weissleder,et al.  Arterial and aortic valve calcification inversely correlates with osteoporotic bone remodelling: a role for inflammation , 2010, European heart journal.

[41]  C. Meyer,et al.  Molecular Imaging of Atherosclerotic Plaques Targeted to Oxidized LDL Receptor LOX-1 by SPECT/CT and Magnetic Resonance , 2010, Circulation. Cardiovascular imaging.

[42]  V. Fuster,et al.  Imaging atherosclerotic plaque inflammation by fluorodeoxyglucose with positron emission tomography: ready for prime time? , 2010, Journal of the American College of Cardiology.

[43]  M. Dobritz,et al.  Imaging of Acute and Chronic Aortic Dissection by 18F-FDG PET/CT , 2010, Journal of Nuclear Medicine.

[44]  Z. Fayad,et al.  Imaging Atherosclerosis and Vulnerable Plaque , 2010, Journal of Nuclear Medicine.

[45]  Albert J. Sinusas,et al.  PET and SPECT in cardiovascular molecular imaging , 2010, Nature Reviews Cardiology.

[46]  G. Dai,et al.  Molecular MRI Detects Low Levels of Cardiomyocyte Apoptosis in a Transgenic Model of Chronic Heart Failure , 2009, Circulation. Cardiovascular imaging.

[47]  G. Dai,et al.  Abstract 593: Molecular MRI of Cardiomyocyte Apoptosis With Simultaneous Delayed Enhancement MRI Distinguishes Apoptotic and Necrotic Myocytes in vivo: Potential for Midmyocardial Salvage in Acute Ischemia , 2009 .

[48]  M. Reiser,et al.  18F-FDG PET/CT Identifies Patients at Risk for Future Vascular Events in an Otherwise Asymptomatic Cohort with Neoplastic Disease , 2009, Journal of Nuclear Medicine.

[49]  C. Yuan,et al.  Carotid magnetic resonance imaging. A window to study atherosclerosis and identify high-risk plaques. , 2009, Circulation journal : official journal of the Japanese Circulation Society.

[50]  Z. Fayad,et al.  HDL as a contrast agent for medical imaging , 2009, Clinical lipidology.

[51]  Ralph Weissleder,et al.  Optical and Multimodality Molecular Imaging: Insights Into Atherosclerosis , 2009, Arteriosclerosis, thrombosis, and vascular biology.

[52]  Gereon R Fink,et al.  Neuroinflammation Extends Brain Tissue at Risk to Vital Peri-Infarct Tissue: A Double Tracer [11C]PK11195- and [18F]FDG-PET Study , 2009, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[53]  P. Libby,et al.  Arterial and Aortic Valve Calcification Abolished by Elastolytic Cathepsin S Deficiency in Chronic Renal Disease , 2009, Circulation.

[54]  N. Narula,et al.  Molecular Imaging of Matrix Metalloproteinase Expression in Atherosclerotic Plaques of Mice Deficient in Apolipoprotein E or Low-Density-Lipoprotein Receptor , 2009, Journal of Nuclear Medicine.

[55]  R. Virmani,et al.  Clinical Feasibility of Molecular Imaging of Plaque Inflammation in Atherosclerosis , 2009, Journal of Nuclear Medicine.

[56]  A. Beer,et al.  Application of RGD-containing peptides as imaging probes for alphavbeta3 expression. , 2009, Frontiers in bioscience.

[57]  Vasilis Ntziachristos,et al.  Real-Time Catheter Molecular Sensing of Inflammation in Proteolytically Active Atherosclerosis , 2008, Circulation.

[58]  H. Saji,et al.  Targeting of Lectinlike Oxidized Low-Density Lipoprotein Receptor 1 (LOX-1) with 99mTc-Labeled Anti–LOX-1 Antibody: Potential Agent for Imaging of Vulnerable Plaque , 2008, Journal of Nuclear Medicine.

[59]  C. Otto,et al.  Calcific aortic stenosis--time to look more closely at the valve. , 2008, The New England journal of medicine.

[60]  D. Towler Oxidation, inflammation, and aortic valve calcification peroxide paves an osteogenic path. , 2008, Journal of the American College of Cardiology.

[61]  Yin Tintut,et al.  Vascular calcification: pathobiology of a multifaceted disease. , 2008, Circulation.

[62]  B. Qiu,et al.  Molecular MRI of hematopoietic stem-progenitor cells: in vivo monitoring of gene therapy and atherosclerosis , 2008, Nature Clinical Practice Cardiovascular Medicine.

[63]  P. Libby The molecular mechanisms of the thrombotic complications of atherosclerosis , 2008, Journal of internal medicine.

[64]  T. Kadowaki,et al.  In vivo imaging in mice reveals local cell dynamics and inflammation in obese adipose tissue. , 2008, The Journal of clinical investigation.

[65]  Ralph Weissleder,et al.  Nanoparticle PET-CT Imaging of Macrophages in Inflammatory Atherosclerosis , 2008, Circulation.

[66]  R. Mirabile,et al.  p38 MAPK Inhibition Reduces Aortic Ultrasmall Superparamagnetic Iron Oxide Uptake in a Mouse Model of Atherosclerosis: MRI Assessment , 2007, Arteriosclerosis, thrombosis, and vascular biology.

[67]  Timur Shtatland,et al.  Osteogenesis Associates With Inflammation in Early-Stage Atherosclerosis Evaluated by Molecular Imaging In Vivo , 2007, Circulation.

[68]  Masatoshi Ishibashi,et al.  The prevalence of inflammation in carotid atherosclerosis: analysis with fluorodeoxyglucose-positron emission tomography. , 2007, European heart journal.

[69]  Ralph Weissleder,et al.  Molecular imaging of cardiovascular disease. , 2007, Circulation.

[70]  Ralph Weissleder,et al.  Optical Visualization of Cathepsin K Activity in Atherosclerosis With a Novel, Protease-Activatable Fluorescence Sensor , 2007, Circulation.

[71]  T. Imaizumi,et al.  Vascular inflammation evaluated by [18F]-fluorodeoxyglucose positron emission tomography is associated with the metabolic syndrome. , 2007, Journal of the American College of Cardiology.

[72]  D. Towler Imaging aortic matrix metabolism: mirabile visu! , 2007, Circulation.

[73]  Ralph Weissleder,et al.  Multimodality Molecular Imaging Identifies Proteolytic and Osteogenic Activities in Early Aortic Valve Disease , 2007, Circulation.

[74]  F. Blankenberg,et al.  99mTc-Annexin A5 for noninvasive characterization of atherosclerotic lesions: imaging and histological studies in myocardial infarction-prone Watanabe heritable hyperlipidemic rabbits , 2007, European Journal of Nuclear Medicine and Molecular Imaging.

[75]  Takashi Kato,et al.  Application of 18F-FDG PET for monitoring the therapeutic effect of antiinflammatory drugs on stabilization of vulnerable atherosclerotic plaques. , 2006, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[76]  Vasilis Ntziachristos,et al.  Inflammation in Atherosclerosis: Visualizing Matrix Metalloproteinase Action in Macrophages In Vivo , 2006, Circulation.

[77]  R. Weissleder,et al.  Cellular Imaging of Inflammation in Atherosclerosis Using Magnetofluorescent Nanomaterials , 2006, Molecular imaging.

[78]  Aloke V. Finn,et al.  Atherosclerotic Plaque Progression and Vulnerability to Rupture: Angiogenesis as a Source of Intraplaque Hemorrhage , 2005, Arteriosclerosis, thrombosis, and vascular biology.

[79]  T. Sakuma,et al.  Simultaneous integrin alphavbeta3 and glycoprotein IIb/IIIa inhibition causes reduction in infarct size in a model of acute coronary thrombosis and primary angioplasty. , 2005, Cardiovascular research.

[80]  Y. Tintut,et al.  Insulin-Like Growth Factor-I Regulates Proliferation and Osteoblastic Differentiation of Calcifying Vascular Cells via Extracellular Signal-Regulated Protein Kinase And Phosphatidylinositol 3-Kinase Pathways , 2005, Circulation research.

[81]  Z. Fayad,et al.  Effect of lipid-lowering therapy with atorvastatin on atherosclerotic aortic plaques detected by noninvasive magnetic resonance imaging. , 2005, Journal of the American College of Cardiology.

[82]  Z. Fayad,et al.  Serial Studies of Mouse Atherosclerosis by In Vivo Magnetic Resonance Imaging Detect Lesion Regression After Correction of Dyslipidemia , 2004, Arteriosclerosis, thrombosis, and vascular biology.

[83]  J. Gillard,et al.  Noninvasive imaging of carotid plaque inflammation , 2004, Neurology.

[84]  Y. Tintut,et al.  Vascular calcification: mechanisms and clinical ramifications. , 2004, Arteriosclerosis, thrombosis, and vascular biology.

[85]  P. Libby,et al.  Atherosclerotic plaque inflammation: the final frontier? , 2004, The Canadian journal of cardiology.

[86]  P. Libby,et al.  The vulnerable atherosclerotic plaque: pathogenesis and therapeutic approach. , 2004, Cardiovascular pathology : the official journal of the Society for Cardiovascular Pathology.

[87]  M. Daemen,et al.  Noninvasive detection of plaque instability with use of radiolabeled annexin A5 in patients with carotid-artery atherosclerosis. , 2004, The New England journal of medicine.

[88]  Ralph Weissleder,et al.  Seeing Within: Molecular Imaging of the Cardiovascular System , 2004, Circulation research.

[89]  E. Fisher,et al.  Effects of Simvastatin on Plasma Lipoproteins and Response to Arterial Injury in Wild-Type and Apolipoprotein-E-Deficient Mice , 2004, Journal of Vascular Research.

[90]  S. Morony,et al.  Hyperlipidemia Promotes Osteoclastic Potential of Bone Marrow Cells Ex Vivo , 2004, Arteriosclerosis, thrombosis, and vascular biology.

[91]  R. Virmani,et al.  Targeting of Apoptotic Macrophages and Experimental Atheroma With Radiolabeled Annexin V: A Technique With Potential for Noninvasive Imaging of Vulnerable Plaque , 2003, Circulation.

[92]  Y. Tintut,et al.  Mineral exploration: search for the mechanism of vascular calcification and beyond: the 2003 Jeffrey M. Hoeg Award lecture. , 2003, Arteriosclerosis, thrombosis, and vascular biology.

[93]  R. Wahl,et al.  Initial experience in small animal tumor imaging with a clinical positron emission tomography/computed tomography scanner using 2-[F-18]fluoro-2-deoxy-D-glucose. , 2003, Cancer research.

[94]  R. Detrano,et al.  Calcification in atherosclerosis: Bone biology and chronic inflammation at the arterial crossroads , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[95]  R. Taillefer,et al.  Imaging characteristics of a novel technetium Tc 99m-labeled platelet glycoprotein IIb/IIIa receptor antagonist in patients With acute deep vein thrombosis or a history of deep vein thrombosis. , 2003, Archives of internal medicine.

[96]  Vasilis Ntziachristos,et al.  Shedding light onto live molecular targets , 2003, Nature Medicine.

[97]  P. Libby,et al.  Stabilization of atherosclerotic plaques: New mechanisms and clinical targets , 2002, Nature Medicine.

[98]  F. Parhami,et al.  High-Density Lipoprotein Regulates Calcification of Vascular Cells , 2002, Circulation research.

[99]  J. Pickard,et al.  Imaging Atherosclerotic Plaque Inflammation With [18F]-Fluorodeoxyglucose Positron Emission Tomography , 2002, Circulation.

[100]  Vasilis Ntziachristos,et al.  In Vivo Imaging of Proteolytic Activity in Atherosclerosis , 2002, Circulation.

[101]  Roger D. Kamm,et al.  The Impact of Calcification on the Biomechanical Stability of Atherosclerotic Plaques , 2001, Circulation.

[102]  P. Libby,et al.  An HMG-CoA Reductase Inhibitor, Cerivastatin, Suppresses Growth of Macrophages Expressing Matrix Metalloproteinases and Tissue Factor In Vivo and In Vitro , 2001, Circulation.

[103]  F. Parhami,et al.  Tumor Necrosis Factor-&agr; Promotes In Vitro Calcification of Vascular Cells via the cAMP Pathway , 2000, Circulation.

[104]  R. Virmani,et al.  Localization of apoptotic macrophages at the site of plaque rupture in sudden coronary death. , 2000, The American journal of pathology.

[105]  P. Libby,et al.  MRI of rabbit atherosclerosis in response to dietary cholesterol lowering. , 1999, Arteriosclerosis, thrombosis, and vascular biology.

[106]  J. Witztum,et al.  Radiolabeled MDA2, an oxidation-specific, monoclonal antibody, identifies native atherosclerotic lesions in vivo , 1999, Journal of nuclear cardiology : official publication of the American Society of Nuclear Cardiology.

[107]  P. Libby,et al.  Expression of the elastolytic cathepsins S and K in human atheroma and regulation of their production in smooth muscle cells. , 1998, The Journal of clinical investigation.

[108]  C. Reutelingsperger,et al.  Annexin V-affinity assay: a review on an apoptosis detection system based on phosphatidylserine exposure. , 1998, Cytometry.

[109]  J. Swanson,et al.  A role for phosphoinositide 3-kinase in the completion of macropinocytosis and phagocytosis by macrophages , 1996, The Journal of cell biology.

[110]  Chun Yuan,et al.  Serial magnetic resonance imaging of experimental atherosclerosis detects lesion fine structure, progression and complications in vivo , 1995, Nature Medicine.

[111]  K. Watson,et al.  TGF-beta 1 and 25-hydroxycholesterol stimulate osteoblast-like vascular cells to calcify. , 1994, The Journal of clinical investigation.