Recurrence Relations for Strongly q-Log-Convex Polynomials

Abstract We consider a class of strongly $q$ -log-convex polynomials based on a triangular recurrence relation with linear coefficients, and we show that the Bell polynomials, the Bessel polynomials, the Ramanujan polynomials and the Dowling polynomials are strongly $q$ -log-convex. We also prove that the Bessel transformation preserves log-convexity.

[1]  Moussa Benoumhani,et al.  On some numbers related to Whitney numbers of Dowling lattices , 1997 .

[2]  B. Berndt Ramanujan’s Notebooks: Part V , 1997 .

[3]  Jiang Zeng A Ramanujan Sequence that Refines the Cayley Formula for Trees , 1999 .

[4]  Emil Grosswald,et al.  Addendum to: “On some algebraic properties of the Bessel polynomials” , 1951 .

[5]  Dominique Dumont,et al.  Grammaire de Ramanujan et arbres de Cayley , 1996, Electron. J. Comb..

[6]  S. L. Soni A note on the bessel polynomials , 1970 .

[7]  Peter W. Shor,et al.  A New Proof of Cayley's Formula for Counting Labeled Trees , 1995, J. Comb. Theory, Ser. A.

[8]  Christian Krattenthaler,et al.  On theq-log-concavity of Gaussian binomial coefficients , 1989 .

[9]  Li Liu,et al.  On the log-convexity of combinatorial sequences , 2007, Adv. Appl. Math..

[10]  Bruce E. Sagan,et al.  Inductive proofs of q-log concavity , 1992, Discret. Math..

[11]  David C. Kurtz,et al.  A Note on Concavity Properties of Triangular Arrays of Numbers , 1972, J. Comb. Theory, Ser. A.

[12]  B. Berndt Ramanujan's Notebooks , 1985 .

[13]  F. Brenti,et al.  Unimodal, log-concave and Pólya frequency sequences in combinatorics , 1989 .

[14]  Seunghyun Seo,et al.  Combinatorial proofs of inverse relations and log-concavity for Bessel numbers , 2008, Eur. J. Comb..

[15]  Orrin Frink,et al.  A new class of orthogonal polynomials: The Bessel polynomials , 1949 .

[16]  Ji-Young Choi,et al.  On the Unimodality and Combinatorics of Bessel Numbers , 2003, Discret. Math..

[17]  Pierre Leroux,et al.  Reduced matrices and q-log-concavity properties of q-Stirling numbers , 1990, J. Comb. Theory A.

[18]  Bruce E. Sagan LOG CONCAVE SEQUENCES OF SYMMETRIC FUNCTIONS AND ANALOGS OF THE JACOBI-TRUDI DETERMINANTS , 1992 .

[19]  Lynne M. Butler,et al.  The q-log-concavity of q-binomial coefficients , 1990, J. Comb. Theory, Ser. A.

[20]  L. M. Butler,et al.  A Note on Log-Convexity of q-Catalan Numbers , 2007 .

[21]  W. A. Al-Salam,et al.  The Bessel polynomials , 1957 .

[22]  Stephen M. Tanny,et al.  On Some Numbers Related to the Bell Numbers , 1975, Canadian Mathematical Bulletin.

[23]  Thomas A. Dowling,et al.  A class of geometric lattices based on finite groups , 1973 .

[24]  R. Stanley Log‐Concave and Unimodal Sequences in Algebra, Combinatorics, and Geometry a , 1989 .