Recurrence Relations for Strongly q-Log-Convex Polynomials
暂无分享,去创建一个
[1] Moussa Benoumhani,et al. On some numbers related to Whitney numbers of Dowling lattices , 1997 .
[2] B. Berndt. Ramanujan’s Notebooks: Part V , 1997 .
[3] Jiang Zeng. A Ramanujan Sequence that Refines the Cayley Formula for Trees , 1999 .
[4] Emil Grosswald,et al. Addendum to: “On some algebraic properties of the Bessel polynomials” , 1951 .
[5] Dominique Dumont,et al. Grammaire de Ramanujan et arbres de Cayley , 1996, Electron. J. Comb..
[6] S. L. Soni. A note on the bessel polynomials , 1970 .
[7] Peter W. Shor,et al. A New Proof of Cayley's Formula for Counting Labeled Trees , 1995, J. Comb. Theory, Ser. A.
[8] Christian Krattenthaler,et al. On theq-log-concavity of Gaussian binomial coefficients , 1989 .
[9] Li Liu,et al. On the log-convexity of combinatorial sequences , 2007, Adv. Appl. Math..
[10] Bruce E. Sagan,et al. Inductive proofs of q-log concavity , 1992, Discret. Math..
[11] David C. Kurtz,et al. A Note on Concavity Properties of Triangular Arrays of Numbers , 1972, J. Comb. Theory, Ser. A.
[12] B. Berndt. Ramanujan's Notebooks , 1985 .
[13] F. Brenti,et al. Unimodal, log-concave and Pólya frequency sequences in combinatorics , 1989 .
[14] Seunghyun Seo,et al. Combinatorial proofs of inverse relations and log-concavity for Bessel numbers , 2008, Eur. J. Comb..
[15] Orrin Frink,et al. A new class of orthogonal polynomials: The Bessel polynomials , 1949 .
[16] Ji-Young Choi,et al. On the Unimodality and Combinatorics of Bessel Numbers , 2003, Discret. Math..
[17] Pierre Leroux,et al. Reduced matrices and q-log-concavity properties of q-Stirling numbers , 1990, J. Comb. Theory A.
[18] Bruce E. Sagan. LOG CONCAVE SEQUENCES OF SYMMETRIC FUNCTIONS AND ANALOGS OF THE JACOBI-TRUDI DETERMINANTS , 1992 .
[19] Lynne M. Butler,et al. The q-log-concavity of q-binomial coefficients , 1990, J. Comb. Theory, Ser. A.
[20] L. M. Butler,et al. A Note on Log-Convexity of q-Catalan Numbers , 2007 .
[21] W. A. Al-Salam,et al. The Bessel polynomials , 1957 .
[22] Stephen M. Tanny,et al. On Some Numbers Related to the Bell Numbers , 1975, Canadian Mathematical Bulletin.
[23] Thomas A. Dowling,et al. A class of geometric lattices based on finite groups , 1973 .
[24] R. Stanley. Log‐Concave and Unimodal Sequences in Algebra, Combinatorics, and Geometry a , 1989 .