A Theory for Multiresolution Signal Decomposition: The Wavelet Representation

Multiresolution representations are effective for analyzing the information content of images. The properties of the operator which approximates a signal at a given resolution were studied. It is shown that the difference of information between the approximation of a signal at the resolutions 2/sup j+1/ and 2/sup j/ (where j is an integer) can be extracted by decomposing this signal on a wavelet orthonormal basis of L/sup 2/(R/sup n/), the vector space of measurable, square-integrable n-dimensional functions. In L/sup 2/(R), a wavelet orthonormal basis is a family of functions which is built by dilating and translating a unique function psi (x). This decomposition defines an orthogonal multiresolution representation called a wavelet representation. It is computed with a pyramidal algorithm based on convolutions with quadrature mirror filters. Wavelet representation lies between the spatial and Fourier domains. For images, the wavelet representation differentiates several spatial orientations. The application of this representation to data compression in image coding, texture discrimination and fractal analysis is discussed. >

[1]  Joel Max,et al.  Quantizing for minimum distortion , 1960, IRE Trans. Inf. Theory.

[2]  Athanasios Papoulis,et al.  Probability, Random Variables and Stochastic Processes , 1965 .

[3]  D. G. Green,et al.  Optical and retinal factors affecting visual resolution. , 1965, The Journal of physiology.

[4]  F. Campbell,et al.  Orientational selectivity of the human visual system , 1966, The Journal of physiology.

[5]  A. Rosenfeld,et al.  Edge and Curve Detection for Visual Scene Analysis , 1971, IEEE Transactions on Computers.

[6]  E. Hall,et al.  Hierarchical search for image matching , 1976, 1976 IEEE Conference on Decision and Control including the 15th Symposium on Adaptive Processes.

[7]  A. Rosenfeld Coarse-fine template matching , 1977 .

[8]  D. Esteban,et al.  Application of quadrature mirror filters to split band voice coding schemes , 1977 .

[9]  Tomaso Poggio,et al.  A Theory of Human Stereo Vision , 1977 .

[10]  Benoit B. Mandelbrot,et al.  Fractal Geometry of Nature , 1984 .

[11]  J. Kulikowski,et al.  Complete adaptation to patterned stimuli: A necessary and sufficient condition for Weber's law for contrast , 1978, Vision Research.

[12]  T. Poggio,et al.  A computational theory of human stereo vision , 1979, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[13]  P. J. Burt,et al.  Fast Filter Transforms for Image Processing , 1981 .

[14]  B. Julesz Textons, the elements of texture perception, and their interactions , 1981, Nature.

[15]  C. Blakemore,et al.  Orientation Selectivity of the Human Visual System as a Function of Retinal Eccentricity and Visual Hemifield , 1981, Perception.

[16]  Edward H. Adelson,et al.  The Laplacian Pyramid as a Compact Image Code , 1983, IEEE Trans. Commun..

[17]  Andrew P. Witkin,et al.  Scale-Space Filtering , 1983, IJCAI.

[18]  John Daugman,et al.  Six formal properties of two-dimensional anisotropie visual filters: Structural principles and frequency/orientation selectivity , 1983, IEEE Transactions on Systems, Man, and Cybernetics.

[19]  V. Zingarelli,et al.  An analytical formula for the design of quadrature mirror filters , 1984 .

[20]  A. Grossmann,et al.  Cycle-octave and related transforms in seismic signal analysis , 1984 .

[21]  Alex Pentland,et al.  Fractal-Based Description of Natural Scenes , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[22]  A. Grossmann,et al.  DECOMPOSITION OF HARDY FUNCTIONS INTO SQUARE INTEGRABLE WAVELETS OF CONSTANT SHAPE , 1984 .

[23]  W. Eric L. Grimson,et al.  Computational Experiments with a Feature Based Stereo Algorithm , 1985, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[24]  John G. Proakis,et al.  Probability, random variables and stochastic processes , 1985, IEEE Trans. Acoust. Speech Signal Process..

[25]  P. C. Millar,et al.  Recursive quadrature mirror filters-Criteria specification and design method , 1985, IEEE Trans. Acoust. Speech Signal Process..

[26]  Y. Meyer,et al.  Ondelettes et bases hilbertiennes. , 1986 .

[27]  Mark J. T. Smith,et al.  Exact reconstruction techniques for tree-structured subband coders , 1986, IEEE Trans. Acoust. Speech Signal Process..

[28]  Y. Meyer Principe d'incertitude, bases hilbertiennes et algèbres d'opérateurs , 1986 .

[29]  John W. Woods,et al.  Subband coding of images , 1986, IEEE Trans. Acoust. Speech Signal Process..

[30]  Alan L. Yuille,et al.  Scaling Theorems for Zero Crossings , 1987, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[31]  G. Battle A block spin construction of ondelettes. Part I: Lemarié functions , 1987 .

[32]  Richard Kronland-Martinet,et al.  Analysis of Sound Patterns through Wavelet transforms , 1987, Int. J. Pattern Recognit. Artif. Intell..

[33]  A B Watson,et al.  Efficiency of a model human image code. , 1987, Journal of the Optical Society of America. A, Optics and image science.

[34]  P. Federbush Quantum field theory in ninety minutes , 1987 .

[35]  Edward H. Adelson,et al.  Orthogonal Pyramid Transforms For Image Coding. , 1987, Other Conferences.

[36]  Y. Meyer Ondelettes et fonctions splines , 1987 .

[37]  Jacob Beck,et al.  Spatial frequency channels and perceptual grouping in texture segregation , 1987, Comput. Vis. Graph. Image Process..

[38]  I. Daubechies Orthonormal bases of compactly supported wavelets , 1988 .

[39]  P. G. Lemari'e,et al.  Ondelettes `a localisation exponentielle , 1988 .

[40]  Y. Meyer,et al.  Bases d'ondelettes dans des ouverts de Rn , 1989 .

[41]  Patrick Flandrin,et al.  On the spectrum of fractional Brownian motions , 1989, IEEE Trans. Inf. Theory.

[42]  S. Mallat Multiresolution approximations and wavelet orthonormal bases of L^2(R) , 1989 .