A new test for stick–slip limit cycles in dry-friction oscillators with a small nonlinearity in the friction characteristic

Abstract We consider a dry friction oscillator on a moving belt with both the Coulomb friction and a small nonlinear addition which can model e.g. the Stribeck effect. By using the perturbation theory, we establish a new condition for the nonlinearity to ensure the occurrence of a stick–slip limit cycle. The test obtained is more accurate compared to what one gets by building upon the divergence test.

[2]  Eugene M. Izhikevich,et al.  Resonate-and-fire neurons , 2001, Neural Networks.

[3]  Marian Wiercigroch A Note on the Switch Function for the Stick-Slip Phenomenon , 1994 .

[4]  Isaac M. Held,et al.  The Gap between Simulation and Understanding in Climate Modeling , 2005 .

[5]  Harry Dankowicz,et al.  Degenerate discontinuity-induced bifurcations in tapping-mode atomic-force microscopy , 2010 .

[6]  Ito,et al.  Multistability and chaos in a spring-block model. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[7]  H. Nijmeijer,et al.  Dynamics and Bifurcations ofNon - Smooth Mechanical Systems , 2006 .

[8]  Zenon Hendzel,et al.  An adaptive critic neural network for motion control of a wheeled mobile robot , 2007 .

[9]  U. Galvanetto,et al.  Dynamics of a Simple Damped Oscillator Undergoing Stick-Slip Vibrations , 1999 .

[10]  Kamal Youcef-Toumi,et al.  A Time Delay Controller for Systems with Unknown Dynamics , 1988, 1988 American Control Conference.

[11]  S. Kryzhevich,et al.  One-dimensional chaos in a system with dry friction: analytical approach , 2013, 1302.3377.

[12]  Tassilo Küpper,et al.  Qualitative bifurcation analysis of a non-smooth friction-oscillator model , 1997 .

[14]  Wen-Tung Chang,et al.  FRICTIONAL BEHAVIOUR OF A BELT-DRIVEN AND PERIODICALLY EXCITED OSCILLATOR , 2002 .

[15]  Madeleine Pascal,et al.  New limit cycles of dry friction oscillators under harmonic load , 2012, Nonlinear Dynamics.

[16]  Masayoshi Tomizuka,et al.  Adaptive Control of Robot Manipulators in Constrained Motion—Controller Design , 1995 .

[17]  Remco I. Leine,et al.  Curve squealing of trains: Measurement, modelling and simulation , 2009 .

[18]  O. Makarenkov,et al.  Dynamics and bifurcations of nonsmooth systems: A survey , 2012 .

[19]  I. G. Malkin,et al.  Some problems in the theory of nonlinear oscillations , 1959 .

[20]  Andy Ruina,et al.  A two degree-of-freedom earthquake model with static/dynamic friction , 1987 .

[21]  R Szalai,et al.  Invariant polygons in systems with grazing-sliding. , 2008, Chaos.

[22]  D. L. Turcotte,et al.  Evidence for chaotic fault interactions in the seismicity of the San Andreas fault and Nankai trough , 1990, Nature.

[23]  van Dh Dick Campen,et al.  Stick-Slip Whirl Interaction in Drillstring Dynamics , 2002 .

[24]  A. Fidlin Nonlinear oscillations in mechanical engineering , 2005 .

[25]  Marek Szczotka SIMULATION AND OPTIMISATION OF THE STEERING KICKBACK PERFORMANCE , 2011 .

[26]  I. D. Abrahams,et al.  Curve squeal of train wheels, Part 1: mathematical model for its generation , 2000 .

[27]  Carlson,et al.  Mechanical model of an earthquake fault. , 1989, Physical review. A, General physics.

[28]  Jorge Sotomayor,et al.  Phase portraits of planar control systems , 1996 .

[29]  M. Oestreich,et al.  Bifurcation and stability analysis for a non-smooth friction oscillator , 1996 .