Randomize-Then-Optimize: A Method for Sampling from Posterior Distributions in Nonlinear Inverse Problems
暂无分享,去创建一个
Heikki Haario | Johnathan M. Bardsley | Marko Laine | Antti Solonen | H. Haario | J. Bardsley | M. Laine | A. Solonen
[1] Timothy J. Robinson,et al. Sequential Monte Carlo Methods in Practice , 2003 .
[2] E. Somersalo,et al. Statistical inversion and Monte Carlo sampling methods in electrical impedance tomography , 2000 .
[3] S. E. Ahmed,et al. Markov Chain Monte Carlo: Stochastic Simulation for Bayesian Inference , 2008, Technometrics.
[4] C. Vogel. Computational Methods for Inverse Problems , 1987 .
[5] Johnathan M. Bardsley,et al. MCMC-Based Image Reconstruction with Uncertainty Quantification , 2012, SIAM J. Sci. Comput..
[6] Geoff K. Nicholls,et al. Prior modeling and posterior sampling in impedance imaging , 1998, Optics & Photonics.
[7] James Martin,et al. A Stochastic Newton MCMC Method for Large-Scale Statistical Inverse Problems with Application to Seismic Inversion , 2012, SIAM J. Sci. Comput..
[8] Heikki Haario,et al. DRAM: Efficient adaptive MCMC , 2006, Stat. Comput..
[9] D. Oliver,et al. Ensemble Randomized Maximum Likelihood Method as an Iterative Ensemble Smoother , 2011, Mathematical Geosciences.
[10] M. Kenward,et al. An Introduction to the Bootstrap , 2007 .
[11] Faming Liang,et al. Statistical and Computational Inverse Problems , 2006, Technometrics.
[12] Hoon Kim,et al. Monte Carlo Statistical Methods , 2000, Technometrics.
[13] Tiangang Cui,et al. Likelihood-informed dimension reduction for nonlinear inverse problems , 2014, 1403.4680.
[14] H. Haario,et al. Markov chain Monte Carlo methods for high dimensional inversion in remote sensing , 2004 .
[15] H. Haario,et al. An adaptive Metropolis algorithm , 2001 .