Randomize-Then-Optimize: A Method for Sampling from Posterior Distributions in Nonlinear Inverse Problems

High-dimensional inverse problems present a challenge for Markov chain Monte Carlo (MCMC)-type sampling schemes. Typically, they rely on finding an efficient proposal distribution, which can be dif...

[1]  Timothy J. Robinson,et al.  Sequential Monte Carlo Methods in Practice , 2003 .

[2]  E. Somersalo,et al.  Statistical inversion and Monte Carlo sampling methods in electrical impedance tomography , 2000 .

[3]  S. E. Ahmed,et al.  Markov Chain Monte Carlo: Stochastic Simulation for Bayesian Inference , 2008, Technometrics.

[4]  C. Vogel Computational Methods for Inverse Problems , 1987 .

[5]  Johnathan M. Bardsley,et al.  MCMC-Based Image Reconstruction with Uncertainty Quantification , 2012, SIAM J. Sci. Comput..

[6]  Geoff K. Nicholls,et al.  Prior modeling and posterior sampling in impedance imaging , 1998, Optics & Photonics.

[7]  James Martin,et al.  A Stochastic Newton MCMC Method for Large-Scale Statistical Inverse Problems with Application to Seismic Inversion , 2012, SIAM J. Sci. Comput..

[8]  Heikki Haario,et al.  DRAM: Efficient adaptive MCMC , 2006, Stat. Comput..

[9]  D. Oliver,et al.  Ensemble Randomized Maximum Likelihood Method as an Iterative Ensemble Smoother , 2011, Mathematical Geosciences.

[10]  M. Kenward,et al.  An Introduction to the Bootstrap , 2007 .

[11]  Faming Liang,et al.  Statistical and Computational Inverse Problems , 2006, Technometrics.

[12]  Hoon Kim,et al.  Monte Carlo Statistical Methods , 2000, Technometrics.

[13]  Tiangang Cui,et al.  Likelihood-informed dimension reduction for nonlinear inverse problems , 2014, 1403.4680.

[14]  H. Haario,et al.  Markov chain Monte Carlo methods for high dimensional inversion in remote sensing , 2004 .

[15]  H. Haario,et al.  An adaptive Metropolis algorithm , 2001 .