Dust properties of UV-bright galaxies at z-2.

We investigate the properties of the extinction curve in the rest-frame UV for a sample of 34 UV-luminous galaxies at $2 -0.4$ a significant 2175 A absorption feature (or “UV bump”) is inferred, indicating an LMC-like extinction curve. On the other hand, the UV continua of the least reddened objects are mostly consistent with SMC-like extinction curves, lacking a significant UV bump, as for the sample of local starbursts investigated by Calzetti and collaborators. Furthermore, the most opaque ($\beta \sim 0$) and, thus (for our models), dustiest UV-luminous FDF galaxies tend to be among the most metal-rich, most massive, and largest systems at $z \sim 2$, indicating $\langle Z \rangle \sim 0.5 {-} 1$ $Z_{\odot}$, $\langle M_{\rm stars} \rangle \sim 6 \times 10^{10}$ $M_{\odot}$, and $\langle R_{\rm eff} \rangle \sim 4$ kpc, respectively. The presence of the UV bump does not seem to depend on the total metallicity, as given by the equivalent width (EW) of the C IV doublet. Conversely, it seems to be associated with a large average EW of the six most prominent interstellar low-ionisation absorption lines falling in the FORS spectra. The average EW of these saturated lines offers a proxy for the ISM topology. We interpret these results as the evidence for a difference in the properties of the dusty ISM among the most evolved UV-luminous, massive galaxies at $z \sim 2$.

[1]  T. Heckman,et al.  The Stellar Population of High-Z Galaxies from Medium-Resolution Spectra in the FORS Deep Field , 2005 .

[2]  A. Inoue Attenuation law of normal disc galaxies with clumpy distributions of stars and dust , 2005, astro-ph/0502067.

[3]  T. Ishii,et al.  Extinction curves expected in young galaxies , 2005, astro-ph/0501158.

[4]  M. Salvato,et al.  The Stellar Mass Function of Galaxies to z ~ 5 in the FORS Deep and GOODS-South Fields , 2004, astro-ph/0412167.

[5]  C. Maraston Evolutionary population synthesis: models, analysis of the ingredients and application to high‐z galaxies , 2004, astro-ph/0410207.

[6]  F. Mannucci,et al.  A supernova origin for dust in a high-redshift quasar , 2004, Nature.

[7]  Tucson,et al.  Dust Attenuation in Late-Type Galaxies. I. Effects on Bulge and Disk Components , 2004, astro-ph/0409183.

[8]  K. Gordon,et al.  Ultraviolet Extinction Properties in the Milky Way , 2004, astro-ph/0408409.

[9]  L. Kewley,et al.  Modeling the Pan-Spectral Energy Distribution of Starburst Galaxies. I. The Role of ISM Pressure and the Molecular Cloud Dissipation Timescale , 2004, astro-ph/0407008.

[10]  J. Brinkmann,et al.  Dust Reddening in Sloan Digital Sky Survey Quasars , 2004, astro-ph/0406293.

[11]  C. Steidel,et al.  Evidence for Solar Metallicities in Massive Star-forming Galaxies at z ≳ 2 , 2004, astro-ph/0405187.

[12]  P. P. van der Werf,et al.  Stellar Populations and Kinematics of Red Galaxies at z > 2: Implications for the Formation of Massive Galaxies , 2004, astro-ph/0404471.

[13]  P. Hall,et al.  Detections of the 2175 Å Dust Feature at 1.4 ≲ z ≲ 1.5 from the Sloan Digital Sky Survey , 2004, astro-ph/0404151.

[14]  P. Caselli,et al.  H2 Formation on Grain Surfaces , 2004, Proceedings of the International Astronomical Union.

[15]  K. Gordon,et al.  The Ultraviolet Extinction Curve of Intraclump Dust in Taurus (TMC-1): Constraints on the 2175 Å Bump Absorber , 2004 .

[16]  R. Bender,et al.  The FORS Deep Field Spectroscopic Survey , 2004, astro-ph/0401500.

[17]  M. Pettini,et al.  A Survey of Star-forming Galaxies in the 1.4 ≲ z ≲ 2.5 Redshift Desert: Overview , 2004, astro-ph/0401439.

[18]  Richard G. Arendt,et al.  Interstellar Dust Models Consistent with Extinction, Emission, and Abundance Constraints , 2003, astro-ph/0312641.

[19]  F. Mannucci,et al.  Extreme gas properties in the most distant quasars , 2003, astro-ph/0312402.

[20]  M. Dopita,et al.  Starburst Galaxies: Why the Calzetti Dust Extinction Law? , 2003, astro-ph/0309471.

[21]  G. Bruzual,et al.  Stellar population synthesis at the resolution of 2003 , 2003, astro-ph/0309134.

[22]  M. Wolff,et al.  A Quantitative Comparison of the Small Magellanic Cloud, Large Magellanic Cloud, and Milky Way Ultraviolet to Near-Infrared Extinction Curves , 2003 .

[23]  A. Cimatti,et al.  Near-Infrared Bright Galaxies at z ≃ 2. Entering the Spheroid Formation Epoch? , 2003, astro-ph/0308456.

[24]  D. O. Astronomy,et al.  Dust in the Early Universe: Dust Formation in the Ejecta of Population III Supernovae , 2003, astro-ph/0307108.

[25]  R. Salvaterra,et al.  Dust formation in very massive primordial supernovae , 2003, astro-ph/0307087.

[26]  M. Giavalisco,et al.  Lyman Break Galaxies at Redshift z ~ 3: Survey Description and Full Data Set , 2003, astro-ph/0305378.

[27]  Geoffrey C. Clayton,et al.  A Quantitative Comparison of SMC, LMC, and Milky Way UV to NIR Extinction Curves , 2003, astro-ph/0305257.

[28]  B. Draine INTERSTELLAR DUST GRAINS , 2003, astro-ph/0304489.

[29]  P. P. van der Werf,et al.  Spectroscopic Confirmation of a Substantial Population of Luminous Red Galaxies at Redshifts z ≳ 2 , 2003, astro-ph/0303166.

[30]  M. Edmunds,et al.  Dust formation in early galaxies , 2003, astro-ph/0302566.

[31]  M. Pettini,et al.  Rest-Frame Ultraviolet Spectra of z ∼ 3 Lyman Break Galaxies , 2003, astro-ph/0301230.

[32]  K. Gordon,et al.  The Dust in Lyman Break Galaxies , 2003, astro-ph/0301121.

[33]  Royal Observatory of Edinburgh,et al.  The FORS Deep Field: Field selection, photometric observations and photometric catalog , , 2002, astro-ph/0211044.

[34]  D. Schaerer The transition from Population III to normal galaxies: Lyα and He II emission and the ionising properties of high redshift starburst galaxies , 2002, astro-ph/0210462.

[35]  A. Ferrara,et al.  Effects of dust grains on early galaxy evolution , 2002, astro-ph/0209034.

[36]  Universitatssternwarte Munchen,et al.  Evidence for chemical evolution in the spectra of high redshift galaxies , 2002, astro-ph/0208231.

[37]  A. Tielens,et al.  Molecular Hydrogen Formation in the Interstellar Medium , 2002, astro-ph/0207035.

[38]  C. Leitherer,et al.  Global Far-Ultraviolet (912-1800 Å) Properties of Star-forming Galaxies , 2002 .

[39]  L. Ho,et al.  Detailed Structural Decomposition of Galaxy Images , 2002, astro-ph/0204182.

[40]  M. Giavalisco,et al.  The Rest-Frame Optical Properties of z ≃ 3 Galaxies , 2001, astro-ph/0107324.

[41]  C. Leitherer,et al.  Ultraviolet Line Spectra of Metal-poor Star-forming Galaxies , 2000, astro-ph/0012358.

[42]  M. Wolff,et al.  The DIRTY Model. II. Self-consistent Treatment of Dust Heating and Emission in a Three-dimensional Radiative Transfer Code , 2000, astro-ph/0011576.

[43]  Adolf N. Witt,et al.  The DIRTY Model. I. Monte Carlo Radiative Transfer through Dust , 2000, astro-ph/0011575.

[44]  B. Draine,et al.  Infrared Emission from Interstellar Dust. I. Stochastic Heating of Small Grains , 2000, astro-ph/0011318.

[45]  A. Cimatti,et al.  Radio galaxies at z 2.5: Results from Keck spectropolarimetry , 2000, astro-ph/0010640.

[46]  R. Maiolino,et al.  Dust in active nuclei. I. evidence for anomalous properties , 2000, astro-ph/0010009.

[47]  P. Ferrara Dust Formation in Primordial Type II Supernovae , 2000, astro-ph/0009176.

[48]  J. Brinchmann,et al.  The Mass Assembly and Star Formation Characteristics of Field Galaxies of Known Morphology , 2000, The Astrophysical journal.

[49]  K. Gordon,et al.  The 2175 Å Extinction Bump in QSO Spectra , 2000 .

[50]  M. Wolff,et al.  Magellanic Cloud-Type Interstellar Dust along Low-Density Sight Lines in the Galaxy , 2000, astro-ph/0003285.

[51]  D. Strickland,et al.  Starburst-driven galactic winds — I. Energetics and intrinsic X-ray emission , 2000, astro-ph/0001395.

[52]  A. Kinney,et al.  The Dust Content and Opacity of Actively Star-forming Galaxies , 1999, astro-ph/9911459.

[53]  W. V. Breugel,et al.  The Hy-Redshift Universe: Galaxy Formation and Evolution at High Redshift , 1999 .

[54]  K. Gordon,et al.  Multiple Scattering in Clumpy Media. II. Galactic Environments , 1999, astro-ph/9907342.

[55]  C. Leitherer,et al.  The Very Young Starburst Merger System NGC 1741 , 1999 .

[56]  Timothy M. Heckman,et al.  Dust Absorption and the Ultraviolet Luminosity Density at z ≈ 3 as Calibrated by Local Starburst Galaxies , 1999, astro-ph/9903054.

[57]  Denis Foo Kune,et al.  Starburst99: Synthesis Models for Galaxies with Active Star Formation , 1999, astro-ph/9902334.

[58]  N. Vogt,et al.  The Magnitude-Size Relation of Galaxies out to z ∼ 1 , 1999, astro-ph/9902147.

[59]  K. Gordon,et al.  A Reanalysis of the Ultraviolet Extinction from Interstellar Dust in the Large Magellanic Cloud , 1998, astro-ph/9811036.

[60]  Edward L. Fitzpatrick,et al.  Correcting for the Effects of Interstellar Extinction , 1998, astro-ph/9809387.

[61]  D. Schlegel,et al.  Maps of Dust Infrared Emission for Use in Estimation of Reddening and Cosmic Microwave Background Radiation Foregrounds , 1998 .

[62]  C. Leitherer,et al.  The Ultraviolet Spectroscopic Properties of Local Starbursts: Implications at High Redshift , 1998, astro-ph/9803185.

[63]  D. Schlegel,et al.  Maps of Dust IR Emission for Use in Estimation of Reddening and CMBR Foregrounds , 1997, astro-ph/9710327.

[64]  A. Cimatti,et al.  On the dust extinction in high-z galaxies and the case of extremely red objects , 1997, astro-ph/9708197.

[65]  E. Dwek The Evolution of the Elemental Abundances in the Gas and Dust Phases of the Galaxy , 1997, astro-ph/9707024.

[66]  D. Calzetti,et al.  Dust in Starburst Galaxies , 1997, astro-ph/9705043.

[67]  Brazil,et al.  Dust in the Small Magellanic Cloud: Interstellar Polarization and Extinction , 1997, astro-ph/9704083.

[68]  N. Odegard,et al.  Detection and Characterization of Cold Interstellar Dust and Polycyclic Aromatic Hydrocarbon Emission, from COBE Observations , 1996, astro-ph/9610198.

[69]  D. Calzetti Reddening and star formation in starburst galaxies , 1996, astro-ph/9610184.

[70]  K. Gordon,et al.  Escape of Stellar Radiation from a Clumpy Scattering Environment , 1996 .

[71]  A. Ferrara,et al.  Monte Carlo simulations of dusty spiral galaxies: extinction and polarization properties , 1995, astro-ph/9512083.

[72]  R. Kudritzki,et al.  THE PHYSICS OF MASSIVE OB STARS IN DIFFERENT PARENT GALAXIES. I. ULTRAVIOLET AND OPTICAL SPECTRAL MORPHOLOGY IN THE MAGELLANIC CLOUDS , 1995 .

[73]  A. Kinney,et al.  Dust extinction of the stellar continua in starburst galaxies: The Ultraviolet and optical extinction law , 1994 .

[74]  A. Kinney,et al.  An atlas of ultraviolet spectra of star-forming galaxies , 1993 .

[75]  T. Miller Dust in the galactic environment , 1993 .

[76]  D. Lambert,et al.  The Chemical Composition of Magellanic Cloud Cepheids and Nonvariable Supergiants , 1992 .

[77]  J. Mathis,et al.  The relationship between infrared, optical, and ultraviolet extinction , 1989 .

[78]  B. Savage,et al.  A survey of interstellar H I from L-alpha absorption measurements. II , 1978 .

[79]  K. Nordsieck,et al.  The Size distribution of interstellar grains , 1977 .

[80]  Stsci,et al.  APJ IN PRESS Preprint typeset using LATEX style emulateapj v. 3/25/03 DUST DEPLETION AND EXTINCTION IN A GAMMA-RAY BURST AFTERGLOW , 2004 .

[81]  B. Draine,et al.  Infrared Emission from Interstellar Dust Ii. the Diffuse Interstellar Medium , 2000 .

[82]  B. Westerlund The Magellanic Clouds , 1980 .

[83]  E. Salpeter The Luminosity function and stellar evolution , 1955 .