Gate length dependent transport properties of in-plane core-shell nanowires with raised contacts

[1]  Wenguang,et al.  Electron , 2020, Definitions.

[2]  X. Wallart,et al.  Buffer free InGaAs quantum well and in-plane nanostructures on InP grown by atomic hydrogen assisted MBE , 2019, Journal of Crystal Growth.

[3]  F. Boekhout,et al.  Selectivity Map for Molecular Beam Epitaxy of Advanced III–V Quantum Nanowire Networks , 2018, Nano letters.

[4]  G. Ghibaudo,et al.  Bottom-up fabrication of InAs-on-nothing MOSFET using selective area molecular beam epitaxy , 2018, Nanotechnology.

[5]  Gérard Ghibaudo,et al.  Static and Low Frequency Noise Characterization of InGaAs MOSFETs and FinFETs on Insulator , 2018, 2018 48th European Solid-State Device Research Conference (ESSDERC).

[6]  M. Rodwell,et al.  Selective-area chemical beam epitaxy of in-plane InAs one-dimensional channels grown on InP(001), InP(111)B, and InP(011) surfaces , 2018, Physical Review Materials.

[7]  G. Patriarche,et al.  In-plane InSb nanowires grown by selective area molecular beam epitaxy on semi-insulating substrate , 2018, Nanotechnology.

[8]  L. Lauhon,et al.  Template-Assisted Scalable Nanowire Networks. , 2018, Nano letters.

[9]  G. Patriarche,et al.  Threading dislocation free GaSb nanotemplates grown by selective molecular beam epitaxy on GaAs (001) for in-plane InAs nanowire integration , 2017 .

[10]  Heike Riel,et al.  Ballistic One-Dimensional InAs Nanowire Cross-Junction Interconnects. , 2017, Nano letters.

[11]  G. Patriarche,et al.  Selective area heteroepitaxy of GaSb on GaAs (001) for in-plane InAs nanowire achievement , 2016, Nanotechnology.

[12]  E. Lind,et al.  Quantized Conduction and High Mobility in Selectively Grown In(x)Ga(1-x)As Nanowires. , 2015, ACS nano.

[13]  X. Wallart,et al.  Impact of P/In flux ratio and epilayer thickness on faceting for nanoscale selective area growth of InP by molecular beam epitaxy , 2015, Nanotechnology.

[14]  Heike Riel,et al.  Template-assisted selective epitaxy of III–V nanoscale devices for co-planar heterogeneous integration with Si , 2015 .

[15]  C. Marcus,et al.  Epitaxy of semiconductor-superconductor nanowires. , 2014, Nature materials.

[16]  P. Ruterana,et al.  Influence of nanoscale faceting on the tunneling properties of near broken gap InAs/AlGaSb heterojunctions grown by selective area epitaxy , 2014, Nanotechnology.

[17]  C. Merckling,et al.  An InGaAs/InP quantum well finfet using the replacement fin process integrated in an RMG flow on 300mm Si substrates , 2014, 2014 Symposium on VLSI Technology (VLSI-Technology): Digest of Technical Papers.

[18]  M. Rodwell,et al.  Highly Scalable Raised Source/Drain InAs Quantum Well MOSFETs Exhibiting $I_{{\scriptstyle {\rm ON}}}=482~\mu{\rm A}/\mu{\rm m}$ at $I_{{\scriptstyle {\rm OFF}}}=100~{\rm nA}/\mu{\rm m}$ and $V_{\rm DD}=0.5~{\rm V}$ , 2014, IEEE Electron Device Letters.

[19]  Heike Riel,et al.  Vertical III-V nanowire device integration on Si(100). , 2014, Nano letters.

[20]  T. Fukui,et al.  Gate-first process and EOT-scaling of III-V nanowire-based vertical transistors on Si , 2013, Device Research Conference.

[21]  E. Lind,et al.  High-Frequency Performance of Self-Aligned Gate-Last Surface Channel MOSFET , 2012 .

[22]  N. Collaert,et al.  Thermionic Emission as a Tool to Study Transport in Undoped nFinFETs , 2010, IEEE Electron Device Letters.

[23]  G. Iannaccone,et al.  Threshold voltage dispersion and impurity scattering limited mobility in carbon nanotube field effect transistors with randomly doped reservoirs , 2006, 2006 European Solid-State Device Research Conference.

[24]  Frederic Boeuf,et al.  Ballistic and pocket limitations of mobility in nanometer Si metal-oxide semiconductor field-effect transistors , 2005 .

[25]  M. Shur,et al.  Low ballistic mobility in submicron HEMTs , 2002, IEEE Electron Device Letters.

[26]  Gerard Ghibaudo,et al.  New method for the extraction of MOSFET parameters , 1988 .

[27]  M. Rodwell,et al.  Highly Scalable Raised Source/Drain InAs Quantum Well MOSFETs Exhibiting I ON = 482 μA/μm at I OFF = 100 nA/μ ma ndV DD = 0. 5V , 2014 .