One-dimensional heterogeneous solids with uncertain elastic modulus in presence of long-range interactions: Interval versus stochastic analysis

The analysis of one-dimensional non-local elastic solids with uncertain Young's modulus is addressed. Non-local effects are represented as long-range central body forces between non-adjacent volume elements. For comparison purpose, the fluctuating elastic modulus of the material is modeled following both a probabilistic and a non-probabilistic approach. To this aim, a novel definition of the interval field concept, able to limit the overestimation affecting ordinary interval analysis, is introduced. Approximate closed-form expressions are derived for the bounds of the interval displacement field as well as for the mean-value and variance of the stochastic response.

[1]  Vladik Kreinovich,et al.  Interval Arithmetic, Affine Arithmetic, Taylor Series Methods: Why, What Next? , 2004, Numerical Algorithms.

[2]  G. Failla,et al.  Physically-Based Approach to the Mechanics of Strong Non-Local Linear Elasticity Theory , 2009 .

[3]  David Moens,et al.  A survey of non-probabilistic uncertainty treatment in finite element analysis , 2005 .

[4]  Eldon Hansen,et al.  Global optimization using interval analysis , 1992, Pure and applied mathematics.

[5]  Su-huan Chen,et al.  Interval static displacement analysis for structures with interval parameters , 2002 .

[6]  Robert L. Mullen,et al.  A new interval finite element formulation with the same accuracy in primary and derived variables , 2011 .

[7]  E. Aifantis,et al.  On the stochastic interpretation of gradient-dependent constitutive equations , 2002 .

[8]  R. Ghanem,et al.  Stochastic Finite Elements: A Spectral Approach , 1990 .

[9]  Jiří Rohn Interval solutions of linear interval equations , 1990 .

[10]  Wim Desmet,et al.  Numerical dynamic analysis of uncertain mechanical structures based on interval fields , 2011 .

[11]  R. Baker Kearfott,et al.  Introduction to Interval Analysis , 2009 .

[12]  Z. Qiu,et al.  Parameter perturbation method for dynamic responses of structures with uncertain-but-bounded parameters based on interval analysis , 2005 .

[13]  J. Stolfi,et al.  An Introduction to Affine Arithmetic , 2003 .

[14]  E. R. Hansen,et al.  A Generalized Interval Arithmetic , 1975, Interval Mathematics.

[15]  A generalized version of the perturbation-based stochastic finite difference method for elastic beams , 2009 .

[16]  Jiri Rohn,et al.  Inverse interval matrix , 1993 .

[17]  A. Cemal Eringen,et al.  Linear theory of nonlocal elasticity and dispersion of plane waves , 1972 .

[18]  Kazimierz Sobczyk,et al.  Stochastic Modeling of Microstructures , 2001 .

[19]  A. Sofi,et al.  Bounds for the stationary stochastic response of truss structures with uncertain-but-bounded parameters , 2013 .

[20]  Arnold Neumaier,et al.  Linear Systems with Large Uncertainties, with Applications to Truss Structures , 2007, Reliab. Comput..

[21]  Makoto Ohsaki,et al.  Optimization And Anti-Optimization Of Structures Under Uncertainty , 2010 .

[22]  I. Elishakoff,et al.  Novel parameterized intervals may lead to sharp bounds , 2012 .

[23]  A. Neumaier Interval methods for systems of equations , 1990 .

[24]  Eugenio Ruocco,et al.  A GENERALIZED ANALYTICAL APPROACH FOR THE BUCKLING ANALYSIS OF THIN RECTANGULAR PLATES WITH ARBITRARY BOUNDARY CONDITIONS , 2011 .

[25]  E. Kröner,et al.  Elasticity theory of materials with long range cohesive forces , 1967 .

[26]  E. Aifantis Gradient Effects at Macro, Micro, and Nano Scales , 1994 .

[27]  Michał Kleiber,et al.  The Stochastic Finite Element Method: Basic Perturbation Technique and Computer Implementation , 1993 .

[28]  E. Aifantis Update on a class of gradient theories , 2003 .

[29]  A. Sofi,et al.  Stochastic analysis of structures with uncertain-but-bounded parameters via improved interval analysis , 2012 .

[30]  Mario Di Paola,et al.  Long-range cohesive interactions of non-local continuum faced by fractional calculus , 2008 .

[31]  M. Zingales,et al.  STOCHASTIC ANALYSIS OF ONE-DIMENSIONAL HETEROGENEOUS SOLIDS WITH LONG-RANGE INTERACTIONS , 2011 .

[32]  Massimiliano Zingales,et al.  Wave propagation in 1D elastic solids in presence of long-range central interactions , 2011 .

[33]  Giuseppe Muscolino,et al.  RESPONSE STATISTICS OF LINEAR STRUCTURES WITH UNCERTAIN-BUT-BOUNDED PARAMETERS UNDER GAUSSIAN STOCHASTIC INPUT , 2011 .

[34]  A. Eringen Screw dislocation in non-local elasticity , 1977 .

[35]  G. Muscolino,et al.  Interval analysis of structures with uncertain-but-bounded axial stiffness , 2011 .

[36]  R. Mullen,et al.  Uncertainty in mechanics problems-interval-based approach , 2001 .

[37]  G. Alefeld,et al.  Introduction to Interval Computation , 1983 .

[38]  Antonina Pirrotta,et al.  Mechanically-based approach to non-local elasticity: Variational principles , 2010 .

[39]  I. Kunin The Theory of Elastic Media with Microstructure and the Theory of Dislocations , 1968 .

[40]  Isaac Elishakoff,et al.  Overestimation-free Computational Version of Interval Analysis , 2012 .

[41]  I. Elishakoff,et al.  Convex models of uncertainty in applied mechanics , 1990 .

[42]  Giuseppe Muscolino,et al.  Stochastic Response of Structures With Uncertain-but-Bounded Parameters , 2009 .