Satellite-based modeling of permafrost temperatures in a tundra lowland landscape

Remote sensing offers great potential for detecting changes of the thermal state of permafrost and active layer dynamics in the context of Arctic warming. This study presents a comprehensive feasibility analysis of satellite-based permafrost modeling for a typical lowland tundra landscape in the Lena River Delta, Siberia. We assessed the performance of a transient permafrost model which is forced by time series of land surface temperatures (LSTs) and snow water equivalents (SWEs) obtained from MODIS and GlobSnow products. Both the satellite products and the model output were evaluated on the basis of long-term field measurements from the Samoylov permafrost observatory. The model was found to successfully reproduce the evolution of the permafrost temperature and freeze-thaw dynamics when calibrated with ground measurements. Monte-Carlo simulations were performed in order to evaluate the impact of inaccuracies in the model forcing and uncertainties in the parameterization. The sensitivity analysis showed that a correct SWE forcing and parameterization of the snow's thermal properties are essential for reliable permafrost modeling. In the worst case, the bias in the modeled permafrost temperatures can amount to 5 °C. For the thaw depth, a maximum uncertainty of about ± 15 cm is found due to possible uncertainties in the soil composition.

[1]  Georg Schwamborn,et al.  Late Quaternary sedimentation history of the Lena Delta , 2002 .

[2]  Christopher P. McKay,et al.  The Thermal Conductivity of Soils with Bimodal Grain-Sizes at Mars Pressures , 2015 .

[3]  Julia Boike,et al.  The surface energy balance of a polygonal tundra site in northern Siberia – Part 2: Winter , 2011 .

[4]  Alfred T. C. Chang,et al.  Quantifying the uncertainty in passive microwave snow water equivalent observations , 2005 .

[5]  Claude R. Duguay,et al.  Using the MODIS land surface temperature product for mapping permafrost: an application to northern Québec and Labrador, Canada , 2009 .

[6]  Vladimir E. Romanovsky,et al.  Effects of unfrozen water on heat and mass transport processes in the active layer and permafrost. , 2000 .

[7]  M. Langer,et al.  Spatial and temporal variations of summer surface temperatures of high-arctic tundra on Svalbard — Implications for MODIS LST based permafrost monitoring , 2011 .

[8]  A. Lachenbruch Mechanics of Thermal Contraction Cracks and Ice-Wedge Polygons in Permafrost , 1962 .

[9]  E. Pfeiffer,et al.  Effect of microrelief and vegetation on methane emission from wet polygonal tundra, Lena Delta, Northern Siberia , 2004 .

[10]  Kenji Yoshikawa,et al.  Thermal state of permafrost in North America: a contribution to the international polar year , 2010 .

[11]  Gaylon S. Campbell,et al.  PREDICTING THE EFFECT OF TEMPERATURE ON SOIL THERMAL CONDUCTIVITY , 1994 .

[12]  M. Torre Jorgenson,et al.  Remote sensing and field‐based mapping of permafrost distribution along the Alaska Highway corridor, interior Alaska , 2010 .

[13]  Chris Derksen,et al.  Spring snow cover extent reductions in the 2008–2012 period exceeding climate model projections , 2012 .

[14]  O. Johansen Thermal Conductivity of Soils , 1977 .

[15]  D. Hall,et al.  Comparison of satellite, thermochron and air temperatures at Summit, Greenland, during the winter of 2008/09 , 2010, Journal of Glaciology.

[16]  Julia Boike,et al.  The surface energy balance of a polygonal tundra site in northern Siberia – Part 1: Spring to fall , 2011 .

[17]  Tingjun Zhang Influence of the seasonal snow cover on the ground thermal regime: An overview , 2005 .

[18]  D. Hall Assessment of polar climate change using satellite technology , 1988 .

[19]  N. DiGirolamo,et al.  MODIS snow-cover products , 2002 .

[20]  I. Prentice,et al.  Integrating peatlands and permafrost into a dynamic global vegetation model: 2. Evaluation and sensitivity of vegetation and carbon cycle processes , 2009 .

[21]  R. Lal,et al.  Recarbonization of the Biosphere , 2012, Springer Netherlands.

[22]  P. Ciais,et al.  On the formation of high‐latitude soil carbon stocks: Effects of cryoturbation and insulation by organic matter in a land surface model , 2009 .

[23]  I. Prentice,et al.  Integrating peatlands and permafrost into a dynamic global vegetation model: 1. Evaluation and sensitivity of physical land surface processes , 2009 .

[24]  Peter Toose,et al.  Evaluation of passive microwave brightness temperature simulations and snow water equivalent retrievals through a winter season , 2012 .

[25]  F. Gans,et al.  Estimating maximum global land surface wind power extractability and associated climatic consequences , 2011 .

[26]  Julia Boike,et al.  Systematic bias of average winter-time land surface temperatures inferred from MODIS at a site on Svalbard, Norway , 2012 .

[27]  Julia Boike,et al.  How the insulating properties of snow affect soil carbon distribution in the continental pan‐Arctic area , 2012 .

[28]  Chris Derksen,et al.  Implementing hemispherical snow water equivalent product assimilating weather station observations and spaceborne microwave data , 2011, 2011 IEEE International Geoscience and Remote Sensing Symposium.

[29]  Shihyan Lee,et al.  A review of global satellite-derived snow products , 2012 .

[30]  Jeff Dozier,et al.  A generalized split-window algorithm for retrieving land-surface temperature from space , 1996, IEEE Trans. Geosci. Remote. Sens..

[31]  Lawrence F. Shampine,et al.  The MATLAB ODE Suite , 1997, SIAM J. Sci. Comput..

[32]  K. Dethloff,et al.  Importance of a soil organic layer for Arctic climate: A sensitivity study with an Arctic RCM , 2008 .

[33]  M. Holland,et al.  Arctic sea ice decline: Faster than forecast , 2007 .

[34]  Dominique Carrer,et al.  Verification of the new ECMWF ERA-Interim reanalysis over France , 2010 .

[35]  Jon Holmgren,et al.  Snow-Shrub Interactions in Arctic Tundra: A Hypothesis with Climatic Implications , 2001 .

[36]  M. König,et al.  The thermal conductivity of seasonal snow , 1997, Journal of Glaciology.

[37]  Acia Impacts of a Warming Arctic: Arctic Climate Impact Assessment , 2004 .

[38]  S. Marchenko,et al.  Permafrost and Active Layer Modeling in the Northern Eurasia using MODIS Land Surface Temperature as an input data. , 2009 .

[39]  Rowan Fealy,et al.  Comparison of ERA‐40, ERA‐Interim and NCEP/NCAR reanalysis data with observed surface air temperatures over Ireland , 2011 .

[40]  C. Schaaf,et al.  Evaluation of surface and near-surface melt characteristics on the Greenland ice sheet using MODIS and QuikSCAT data , 2009 .

[41]  Chris Derksen,et al.  Evaluation of passive microwave snow water equivalent retrievals across the boreal forest/tundra transition of western Canada , 2005 .

[42]  Wolfgang Wagner,et al.  Temporal and spatial variability of the beginning and end of daily spring freeze/thaw cycles derived from scatterometer data , 2007 .

[43]  Q. Zhuang,et al.  Modeling thermal dynamics of active layer soils and near‐surface permafrost using a fully coupled water and heat transport model , 2012 .

[44]  S. Colbeck,et al.  An overview of seasonal snow metamorphism , 1982 .

[45]  Kurt Roth,et al.  Modeling the thermal dynamics of the active layer at two contrasting permafrost sites on Svalbard and on the Tibetan Plateau , 2011 .

[46]  W. Wagner,et al.  Soil moisture from operational meteorological satellites , 2007 .

[47]  L. E. Goodrich,et al.  The influence of snow cover on the ground thermal regime , 1982 .

[48]  Mary Jo Brodzik,et al.  Recent northern hemisphere snow extent: A comparison of data derived from visible and microwave satellite sensors , 2001 .

[49]  Julienne C. Stroeve,et al.  Evaluation of the MODIS (MOD10A1) daily snow albedo product over the Greenland ice sheet , 2006 .

[50]  Eric F. Wood,et al.  Multiple Effects of Changes in Arctic Snow Cover , 2011, AMBIO.

[51]  J. Thepaut,et al.  The ERA‐Interim reanalysis: configuration and performance of the data assimilation system , 2011 .

[52]  Julia Boike,et al.  Baseline characteristics of climate, permafrost and land cover from a new permafrost observatory in the Lena River Delta, Siberia (1998-2011) , 2012 .

[53]  Steve Frolking,et al.  Soil temperature response to 21st century global warming: the role of and some implications for peat carbon in thawing permafrost soils in North America , 2011 .

[54]  Suzanne Hurter,et al.  Heat flow from the Earth's interior: Analysis of the global data set , 1993 .

[55]  J. Pulliainen,et al.  Investigating the feasibility of the globsnow snow water equivalent data for climate research purposes , 2010, 2010 IEEE International Geoscience and Remote Sensing Symposium.

[56]  Paul Chinowsky,et al.  Estimating future costs for Alaska public infrastructure at risk from climate change , 2008 .

[57]  Claude R. Duguay,et al.  Comparison of MODIS-derived land surface temperatures with ground surface and air temperature measurements in continuous permafrost terrain , 2011 .

[58]  D. Hall,et al.  Accuracy assessment of the MODIS snow products , 2007 .

[59]  Julia Boike,et al.  Spatial and temporal variations of summer surface temperatures of wet polygonal tundra in Siberia - implications for MODIS LST based permafrost monitoring , 2010 .

[60]  J. Boike,et al.  Climatology and summer energy and water balance of polygonal tundra in the Lena River Delta, Siberia , 2008 .

[61]  V. V. Salomonsona,et al.  Estimating fractional snow cover from MODIS using the normalized difference snow index , 2004 .

[62]  Assessment Programme,et al.  Arctic Climate Issues 2011: Changes in Arctic Snow, Water, Ice and Permafrost. SWIPA 2011 Overview Report. , 2012 .

[63]  Kurt Roth,et al.  Permafrost – Physical Aspects, Carbon Cycling, Databases and Uncertainties , 2012 .

[64]  Eric Rignot,et al.  Mass Balance of Polar Ice Sheets , 2002, Science.

[65]  Ranga B. Myneni,et al.  Remote sensing of vegetation and land-cover change in Arctic Tundra Ecosystems , 2004 .

[66]  Ian Simmonds,et al.  Erroneous Arctic Temperature Trends in the ERA-40 Reanalysis: A Closer Look , 2011 .

[67]  Margareta Johansson,et al.  Thawing permafrost and thicker active layers in sub‐arctic Sweden , 2008 .

[68]  Birgit Heim,et al.  Subpixel heterogeneity of ice-wedge polygonal tundra: a multi-scale analysis of land cover and evapotranspiration in the Lena River Delta, Siberia , 2012 .

[69]  Dick Dee,et al.  Low‐frequency variations in surface atmospheric humidity, temperature, and precipitation: Inferences from reanalyses and monthly gridded observational data sets , 2010 .

[70]  M. Langer,et al.  The Cryosphere Modeling the impact of wintertime rain events on the thermal regime of permafrost , 2011 .

[71]  Steven A. Ackerman,et al.  Errors in cloud detection over the Arctic using a satellite imager and implications for observing feedback mechanisms. , 2010 .