Online parameter identification of the asymmetrical Bouc–Wen model for piezoelectric actuators

Abstract The hysteresis of piezoelectric actuators (PAs) possesses the asymmetrical and frequency-dependent characteristics. In order to accurately model the hysteresis of a PA, an asymmetrical Bouc–Wen model is proposed and established in this paper. The recursive least-squares online identification method is used to real-time identify the parameters of the proposed model. Meanwhile, in order to avoid the data saturation phenomenon, the limited memory method is used to limit the number of the data sets. The experimental system is setup and the performance of this method is experimentally verified. Experimental results show that the proposed online identification method can effectively improve the modeling accuracy.

[1]  Uri Kushnir,et al.  Advanced piezoelectric–ferroelectric stack actuator , 2009 .

[2]  Ying-Shieh Kung,et al.  A comparison of fitness functions for the identification of a piezoelectric hysteretic actuator based on the real-coded genetic algorithm , 2006 .

[3]  F. Ikhouane,et al.  Variation of the hysteresis loop with the Bouc–Wen model parameters , 2007 .

[4]  M L Johnson,et al.  Parameter estimation by least-squares methods. , 1992, Methods in enzymology.

[5]  Ion Stiharu,et al.  Modeling and application of MR dampers in semi-adaptive structures , 2008 .

[6]  Murti V. Salapaka,et al.  High bandwidth nano-positioner: A robust control approach , 2002 .

[7]  Samuel I. En Lin The theoretical and experimental studies of a circular multi-layered annular piezoelectric actuator , 2011 .

[8]  J.A. De Abreu-Garcia,et al.  Tracking control of a piezoceramic actuator with hysteresis compensation using inverse Preisach model , 2005, IEEE/ASME Transactions on Mechatronics.

[9]  Oriol Gomis-Bellmunt,et al.  Control of a piezoelectric actuator considering hysteresis , 2009 .

[10]  Y. Wen Method for Random Vibration of Hysteretic Systems , 1976 .

[11]  Jiong Tang,et al.  Design of a linear-motion dual-stage actuation system for precision control , 2009 .

[12]  Wei Zhu,et al.  Non-symmetrical Bouc–Wen model for piezoelectric ceramic actuators , 2012 .

[13]  Hwan-Sik Yoon,et al.  A Hybrid Approach to Model Hysteretic Behavior of PZT Stack Actuators , 2009 .

[14]  Elias B. Kosmatopoulos,et al.  Development of adaptive modeling techniques for non-linear hysteretic systems , 2002 .

[15]  U-Xuan Tan,et al.  Feedforward Controller of Ill-Conditioned Hysteresis Using Singularity-Free Prandtl–Ishlinskii Model , 2009, IEEE/ASME Transactions on Mechatronics.

[16]  Christopher Niezrecki,et al.  Piezoelectric actuation: State of the art , 2001 .

[17]  Gangbing Song,et al.  A comprehensive model for piezoceramic actuators: modelling, validation and application , 2009 .

[18]  Marc Kamlah,et al.  A constitutive model for ferroelectric PZT ceramics under uniaxial loading , 1999 .

[19]  George Gazetas,et al.  A model for grain-crushing-induced landslides—Application to Nikawa, Kobe 1995 , 2007 .

[20]  S. Li-ning,et al.  Tracking control of piezoelectric actuator based on a new mathematical model , 2004 .

[21]  Santosh Devasia,et al.  A Survey of Control Issues in Nanopositioning , 2007, IEEE Transactions on Control Systems Technology.

[22]  Y. K. Wen,et al.  Evaluation of 3D Steel Moment Frames under Earthquake Excitations. I: Modeling , 2007 .

[23]  Barbara Kaltenbacher,et al.  Efficient Modeling of Ferroelectric Behavior for the Analysis of Piezoceramic Actuators , 2008 .

[24]  Denis Laxalde,et al.  Dynamics of a linear oscillator connected to a small strongly non-linear hysteretic absorber , 2006, 0801.4351.

[25]  Yanling Tian,et al.  A Novel Direct Inverse Modeling Approach for Hysteresis Compensation of Piezoelectric Actuator in Feedforward Applications , 2013, IEEE/ASME Transactions on Mechatronics.

[26]  Shiuh-Jer Huang,et al.  Optimal LuGre friction model identification based on genetic algorithm and sliding mode control of a piezoelectric-actuating table , 2009 .