Generation and propagation of seismic SH waves in multi-layered media with irregular interfaces

This chapter is devoted to summarize the global generalized reflection/transmission matrices method developed by the author earlier for solving the generation and propagation of seismic SH wave in multi-layered media with irregular interfaces. This method is an extension or generalization of the classic generalized reflection/transmission coefficients method developed for solving the problem of seismic waves' generation and propagation in laterally homogeneous layered media. It can be directly applied to simulate the seismic SH wave field for a variety of complex structure models such as the irregular topography, basin, soft or hard inclusions, and laterally varying sub-surfaces, etc. These models are important for seismological study. Because of its analytical nature, this method is also successfully applied to establish the theoretical formulation of modes and surface wave in multi-layered media with irregular interfaces. Besides the systematic derivation of the theoretical formulation, a number of numerical examples are presented in this chapter to show the versatile applicability of this theoretical method.

[1]  Jean-Pierre Vilotte,et al.  Spectral Element Analysis in Seismology , 2007 .

[2]  V. Maupin Introduction to mode coupling methods for surface waves , 2007 .

[3]  C. H. Chapman,et al.  Body-wave seismograms in inhomogeneous media using Maslov asymptotic theory , 1982 .

[4]  N. Ricker Transient waves in visco-elastic media , 1977 .

[5]  K. Yomogida Gaussian beams for surface waves in laterally slowly-varying media , 1985 .

[6]  Warwick D. Smith A nonreflecting plane boundary for wave propagation problems , 1974 .

[7]  K. Kohketsu,et al.  2-Dreflectivity method and synthetic seismograms for irregularly layered structures -I. SH-wave generation , 1987 .

[8]  P. Morse,et al.  Methods of theoretical physics , 1955 .

[9]  Hiroshi Takenaka,et al.  Modelling seismic wave propagation in a two-dimensional cylindrical whole-earth model using the pseudospectral method , 2001 .

[10]  A. Levander Fourth-order finite-difference P-SV seismograms , 1988 .

[11]  B. Kennett,et al.  Seismic wavefield calculation for laterally heterogeneous whole earth models using the pseudospectral method , 1998 .

[12]  Pierre-Yves Bard,et al.  The seismic response of sediment-filled valleys. Part 2. The case of incident P and SV waves , 1980 .

[13]  Paul G. Richards,et al.  Quantitative Seismology: Theory and Methods , 1980 .

[14]  Keiiti Aki,et al.  Discrete wave-number representation of seismic-source wave fields , 1977, Bulletin of the Seismological Society of America.

[15]  Stéphane Gaffet,et al.  A boundary integral equation‐discrete wavenumber representation method to study wave propagation in multilayered media having irregular interfaces , 1989 .

[16]  Love waves in multilayered media with irregular interfaces: I. Modal solutions and excitation formulation , 1999 .

[17]  P. Waterman,et al.  New Formulation of Acoustic Scattering , 1969 .

[18]  Hiroshi Kawase,et al.  Time-domain response of a semi-circular canyon for incident SV, P, and Rayleigh waves calculated by the discrete wavenumber boundary element method , 1988 .

[19]  D. Boore,et al.  Finite Difference Methods for Seismic Wave Propagation in Heterogeneous Materials , 1972 .

[20]  Mrinal K. Sen,et al.  Kirchhoff-Helmholtz reflection seismograms in a laterally inhomogeneous multi-layered elastic medium - II. Computations , 1985 .

[21]  E. Rosenblueth,et al.  Ground motion at canyons of arbitrary shape under incident sh waves , 1979 .

[22]  B. Kennett,et al.  Seismic Wave Propagation in Stratified Media , 1983 .

[23]  Michel Bouchon,et al.  Effect of topography on surface motion , 1973, Bulletin of the Seismological Society of America.

[24]  Keiiti Aki,et al.  Surface motion of a layered medium having an irregular interface due to incident plane SH waves , 1970 .

[25]  L. Knopoff A matrix method for elastic wave problems , 1964 .

[26]  Surface wave holography , 1987 .

[27]  Seismogram synthesis for multi-layered media with irregular interfaces by global generalized reflection/transmission matrices method, I. Theory of two-dimensional SH case , 1990 .

[28]  Edip Baysal,et al.  Forward modeling by a Fourier method , 1982 .

[29]  P. Waterman,et al.  Scattering by periodic surfaces , 1975 .

[30]  J. Gillis,et al.  Methods in Computational Physics , 1964 .

[31]  Xiaofei Chen,et al.  A systematic and efficient method of computing normal modes for multilayered half-space , 1993 .

[32]  B. Gjevik A variational method for love waves in nonhorizontally layered structures , 1973, Bulletin of the Seismological Society of America.

[33]  Synthetic SH seismograms in a laterally varying medium by the discrete wavenumber method , 1985 .

[34]  D. Harkrider,et al.  A generalized reflection-transmission coefficient matrix and discrete wavenumber method for synthetic seismograms , 1983 .

[35]  Marijan Dravinski Influence of interface depth upon strong ground motion , 1982 .

[36]  D. Helmberger,et al.  Glorified optics and wave propagation in nonplanar structure , 1978, Bulletin of the Seismological Society of America.

[37]  N. A. Haskell The Dispersion of Surface Waves on Multilayered Media , 1953 .

[38]  Vlastislav Červený,et al.  Seismic ray method: Recent developments , 2007 .

[39]  R. J. Apsel,et al.  On the Green's functions for a layered half-space. Part II , 1983 .

[40]  G. Arfken Mathematical Methods for Physicists , 1967 .

[41]  K. Fuchs,et al.  Computation of Synthetic Seismograms with the Reflectivity Method and Comparison with Observations , 1971 .

[42]  L. Frazer Synthetic seismograms using multifold path integrals - I. Theory , 1987 .

[43]  B. Kennett,et al.  2‐D reflectivity method and synthetic seismograms for irregularly layered structures—II. Invariant embedding approach , 1991 .

[44]  B. Kennett,et al.  An efficient approach to the seismogram synthesis for a basin structure using propagation invariants , 1996, Bulletin of the Seismological Society of America.

[45]  D. Komatitsch,et al.  The spectral element method: An efficient tool to simulate the seismic response of 2D and 3D geological structures , 1998, Bulletin of the Seismological Society of America.

[46]  J. Woodhouse Surface Waves in a Laterally Varying Layered Structure , 1974 .

[47]  P. Moczo,et al.  The finite-difference time-domain method for modeling of seismic wave propagation , 2007 .

[48]  Vlastislav Červený,et al.  Ray method in seismology , 1977 .

[49]  M. Bouchon,et al.  Boundary Integral Equations and Boundary Elements Methods in Elastodynamics , 2007 .

[50]  M. Saito Excitation of free oscillations and surface waves by a point source in a vertically heterogeneous Earth , 1967 .

[51]  M. Trifunac Scattering of plane sh waves by a semi‐cylindrical canyon , 1972 .

[52]  Xiaofei Chen Seismogram synthesis for multi-layered media with irregular interfaces by global generalized reflection/transmission matrices method. II. Applications for 2D SH case , 1995, Bulletin of the Seismological Society of America.

[53]  L. Neil Frazer,et al.  A Kirchhoff method for the computation of finite-frequency body wave synthetic seismograms in laterally inhomogeneous media , 1984 .

[54]  S. M. Day,et al.  Finite element analysis of seismic scattering problems , 1977 .

[55]  Michel Bouchon,et al.  A simple, complete numerical solution to the problem of diffraction of SH waves by an irregular surface , 1985 .

[56]  Theoretical estimation of the eigenfrequencies of 2-D resonant sedimentary basins: Numerical computations and analytic approximations to the elastic problem , 1992 .

[57]  Don L. Anderson,et al.  Surface wave energy from point sources in plane layered Earth models , 1966 .

[58]  Martin Galis,et al.  Simulation of the Planar Free Surface with Near-Surface Lateral Discontinuities in the Finite-Difference Modeling of Seismic Motion , 2004 .

[59]  Jan Drewes Achenbach,et al.  Modern Problems in Elastic Wave Propagation , 1979 .

[60]  H. Takeuchi,et al.  Seismic Surface Waves , 1972 .